

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Serum Osteopontin and its Relation to Colorectal Carcinoma in Egyptian Patient

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine & Gastroenterology and Hepatology

By

Abanoub Refaat Saeed Hakim

M.B.B.CH, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr./ Mohamed Abd Elmoghny Mostafa

Professor of Internal Medicine at Gastroenterology and Hepatology Unit Faculty of Medicine, Ain Shams University

Prof. Dr./ Hany Haron Kayser

Assistant Professor of Internal Medicine at Gastroenterology and Hepatology Unit Faculty of Medicine, Ain Shams University

Dr./Ahmed Samir Allam

Assistant Professor of Internal Medicine and Gastroenterology and Hepatology Unit Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University 2020

Acknowledgments

First and foremost, I feel always indebted to Allah the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr./ Mohamed Abd Elmoghny Mostafa, Professor of Internal Medicine at Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Prof. Dr./ Hany Haron Kayser, Assistant Professor of Internal Medicine at Gastroenterology and Hepatology Unit, Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I am deeply thankful to Dr./Ahmed Samir Allam,
Assistant Professor of Internal Medicine and
Gastroenterology and Hepatology Unit, Faculty of
Medicine, Ain Shams University, for his great help,
outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Abanoub Refaat Saeed Hakim

List of Contents

Title	Page No.
List of Tables	I
List of Figures	III
List of Abbreviations	VI
Introduction	1 -
Aim of the Work	4
Review of Literature	
Colorectal Carcinoma	5
Diagnosis of Colorectal Carcinoma	27
Osteopontin	
Subjects and Methods	78
Results	
Discussion	
Summary	
Conclusion	
Recommendations	
References	
Arabic Summary	

List of Tables

Table N	o. Title	Page No.
Table 1:	The hallmarks of cancer	20
Table 2:	Modified Dukes staging:	56
Table 3:	Astler-Coller staging:	56
Table 4:	TNM staging	57
Table 5:	The difference between each stage	58
Table 6:	TNM classification	86
Table 7:	Descriptive data for group 1 as regardemographic data	
Table 8:	Descriptive analysis for group 1 as r history of patient and clinical data	_
Table 9:	Descriptive analysis for group 1 as r laboratory data (CBC, AST, ALT, creat INR, Osteopontin)	inine,
Table 10:	Descriptive analysis for group 1 as r Raiological data (Pelvi abdominal Colonscopy, CT scan abdomin with contr	us,
Table 11:	Descriptive analysis for group 1 as r histopathological examinaton	_
Table 12:	Descriptive analysis for group 1 as r Metasis and Staging	~
Table 13:	Descriptive analysis for groups 2 as r colonscopic finding	_
Table 14:	Comparison between the two group demographic data	
Table 15:	Comparison between the two g regarding different clinical and history of	<u> </u>

List of Tables cont...

Table No	o. Title	Page No.
Table 16:	Comparison between The studied gror	-
Table 17:	Comparison between The studied grownegard histopathological finding:	-
Table 18:	Correlation between osteopontin level laboratory parameters of colorectal patient	cancer
Table 19:	Correlation between osteopontin level dermographic, clinical, radiological staging parameters of colorectal care patients	and einoma
Table 20:	The ROC curve between patients controls as regard Osteopontin	

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Anatomy of colon and rectum	7
Figure 2:	The polyp to colorectal cancer sequence	
Figure 3:	CT images illustrating different T sta	
rigure 5.	colon cancer	
Figure 4:	Axial TSE image	
Figure 4:		
Figure 5:	Colon cancer	
Figure 6:	Colonoscopy: Colon Cancer Desce	_
T3: 77:	Colon	
Figure 7:	Colon-tumor-in-size-3-cm-over-sigmoid	
T' 0.	colon	
Figure 8:	Sessile Polyp	
Figure 9:	Pedunculated Polyp - Axial view (A) s	
	a large pedunculated polyp with a	
	stalk in the sigmoid colon	
Figure 10:	Colonic polyps	
Figure 11:	An example of moderately different	
	adenocarcinoma showing compli	
	glandular structures in a desmop	
	stroma (original magnification ×200)	
Figure 12:	Mucinous adenocarcinoma sho	~
	abundant extracellular mucin (or	_
	magnification ×200)	
Figure 13:	Signet ring cell carcinoma (ori	
	magnification ×400)	53
Figure 14:	Medullary carcinoma showing a pu	shing
	border at the tumor edge (or	iginal
	magnification ×40)	54
Figure 15:	OPN is highly expressed in osteod	lasts,
J	osteoblasts, vascular and skeletal sr	
	muscle cells, endothelial cells, lympho	
	and neural cells (neurons, glial cells	-
	Schwann cells)	

List of Figures cont...

Fig. No.	Title	Page No.
Figure 16:	Schematic illustration of the Osteop signaling pathway and effects dobstructive nephropathy	uring
Figure 17:	T-helper-cell polarization by osteop	ontin
Figure 18:	isoforms expressed by different cell type Alternative translational mechanism generates sOPN and iOPN	that
Figure 19:	Colonscopy	
Figure 20:	Show the number of male patients	s and
	female patients	90
Figure 21:	Show the change of percentage of ty clinical data for colonscopy	_
Figure 22:	Show the percentage of ultrasound fi in CRC	nding
Figure 23:	Show the percentage between the ty	pe of
Eigen O4:	histopathological change in CRC	
Figure 24:	Show the percentage of metastasis bercolorectal patients.	
Figure 25:	Show the different percentage of T between CRC patients	stage
Figure 26:	Show the different percentage of N sta	
118410 20	CRC patients.	_
Figure 27:	Show the different percentage of N sta	
C	CRC patients	
Figure 28:	Show the different percentage bet	tween
	finding of colonscopy in control group.	
Figure 29:	Show the difference between two g according to age	_
Figure 30:	Show the difference between two g	
-	according to gender	101
Figure 31:	Show the difference between two g according to the clinical data	roups

List of Figures cont...

Fig. No.	Title	Page No.
Figure 32:	Show the difference between two g according to osteopontin	-
Figure 33:	Show the difference between two g according to different histopathol	roups
	finding	106
Figure 34:	Show the correlation between osteop and ALT	
Figure 35:	Show the correlation between osteop and metastasis of CRC	oontin
Figure 36:	Show the correlation between oster and different types of T stage	pntin
Figure 37:	Show the correlation between osteo and different types of N stage	pntin
Figure 38:	Show the correlation between osteo and different types of M stage	pntin

List of Abbreviations

Abb.	Full term
1.700	
	American Joint Committee on Cancer
	Adenomatous polyposis coli
	AT-rich interactive domain 1A
	Body mass index
	Bone Sialoprotein
	Bone Sialoprotein 1
	Complete Blood Count
	CpG Island Methylator Phenotype
	Chromosome unstable
	Colorectal cancer
	Computed tomography
	Computed tomographic Colongraphy
CTNNB1	
DCs	
	Dentin Matrix Protein-1
<i>DSPP</i>	Dentin Sialophosphoprotein
<i>ECM</i>	Extracellular matrix
EGF	Epidermal growth factor
ETA1	Early T-lymphocyte Activation 1
FAM123B	Family with sequence similarity 123B
<i>FAP</i>	Familial adenomatous polyposis
<i>FIT</i>	Fecal immunochemical test
	Frizzled class receptor 10
gFOBT	Guaiac-based fecal occult blood test
GRGDS	Recognition sequence
<i>HNPCC</i>	Hereditary nonpolyposis colorectal cancer
<i>Hyp-MSI</i>	Microsatellite unstable
<i>Hyp-MSS</i>	Hypermutable-microsatellite stable
<i>IARC</i>	International Agency for Research on
	Cancer
<i>IBD</i>	Inflammatory bowel disease
<i>IFN-</i> α	
IFNAR	Type I IFN receptor

List of Abbreviations cont...

Abb.	Full term
IL-12	Interloukin-19
	Intracellular isoform of osteopontin
<i>IV</i>	-
	Low-density lipoprotein receptor-related
2111	protein 5
<i>MAPK</i>	Mitogen-activated protein kinase
	MatrixExtracellular Phosphoglycoprotein
	Matrix Metalloproteinases
	Magnetic Resonance Imaging
	Microsatellite instability
MSS	Microsatellite stable
<i>NBI</i>	Narrow-Band Imaging
<i>NSAIDs</i>	Nonsteroidal anti-inflammatory drugs
<i>NSE</i>	Neuron-specific enolase
<i>OPN</i>	Osteopontin
<i>PAI-1</i>	Plasminogen activator inhibitor-1
pDCs	Plasmacytoid dendritic cells
<i>PET</i>	Positron emission tomography
<i>PI3K</i>	Phosphatidylinositol 3- kinase
<i>PI3KCA</i>	Phosphatidylinositol-4,5-bisphosphate 3-
	kinase catalytic subunit α
	Phosphatase and tensin homologue
	Polyunsaturated fatty acids
	Rinbinding tripeptide Arg-Gly-Asp
	Socioeconomic status
	Secreted frizzled-related protein
SIBLING	Small Integrin-Binding Ligand N-linked
CI EAD (Glycoprotein
	SMAD family member 4
	Single nucleotide polymorphisms
	SRY (sex-determining region Y) box 9
	Secreted phosphoprotein 1
<i>TAMs</i>	Tumour associated marcrophage

List of Abbreviations cont...

Abb.	Full term
TGFBR2	Transforming-growth factor-beta receptor 2
	Transforming growth factor-β
<i>Th1</i>	T helper type 1
<i>TNM</i>	Tumor-node-metastasis
<i>UICC</i>	Union for International Cancer Control
WHO	World Health Organization

ABSTRACT

Background: Colorectal cancer had a low incidence several decades ago. However, it has become a predominant cancer and now accounts for approximately 10% of cancer-related mortality in western countries. The 'rise' of colorectal cancer in developed countries can be attributed to the increasingly ageing population, unfavourable modern dietary habits and an increase in risk factors such as smoking, low physical exercise and obesity.

Objectives: The aim of this study to evaluate the role of serum level of osteopontin in prediction of Colorectal Carcinomain in correlation with tissue histopathology which it is the gold standard test in Egyptian patient.

Patients and Methods: The study was a Randomized controlled clinical trial. Which is a prospective, random, clinical trial conducted at Ain Shams University Hospitals at endoscopic unit on patients who refered for colonscopy. This study was conducted on 80 patients who were divided into 2 groups: Group A: 40 patients diagnosed as Colorectal Carcinoma as a patient group, Group B: 40 patients with age and sex matched control group who have normal colonscopy.

Results: There was statistically significant difference between CRC patients and normal colonscopic patients regarding the level ofosteopontin being higher in CRC patients (P value = 0.000). Also ROC curve for osteopontin in prediction of CRC showed the best cut of value >12 ng/ml with area under the curve (AUC) = 0.889, sensitivity =85%, specificity =77.5% with positive predictive value =79.1%

Conclusion: Serum Osteopontin (OPN) level is higher in patients with CRC than patients with normal colonscopy, so it can be used as a diagnostic marker for HCC.

Keywords: Serum Osteopontin, Colorectal Carcinoma