

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Evaluation of Cardioprotective Effect of a Single Oral Dose of Nicorandil before Primary PCI in Patients presenting with Anterior STEMI

Thesis

Submitted for partial Fulfillment of Master Degree In Cardiology

By Beshoy Romany Louis

M.B.B.Ch, Ain Shams University

Under Supervision of **Dr/ Tarek Khairy Abdel Dayem**

Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr/ Mostafa Ahmed Mohamed Elnozahi

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Department of Cardiology Faculty of Medicine Ain Shams University 2020

First of all, thanks to **Allah** for helping and guiding me in accomplishing this work and for everything else I have.

Words are not sufficient to express my sincerest appreciation and my deepest gratitude to **Prof. Dr. Tarek Khairy Abdel Dayem**, Professor of Cardiology, Faculty of Medicine, Ain Shams University, for his continuous encouragement, and his precious remarks which guided me to present this work in its proper way, it was indeed an honor to have been supervised by him.

I would like to thank **Dr. Mostafa Ahmed Mohamed Elnozahi**, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for his guidance and suggestions which were of great value to me.

To my Dear Father

I consider myself so fortunate to have the greatest, wisest and most wonderful Father in the whole world. Without you in my life, I would have never been the man who I am today, for I attended with you the best school in life. Truly, I will never be able to give you your due gratitude.

To my Dear Mother

The most kind and awesome person in life who despite every set back in my life never stopped believing in me. No words are enough to express the thanks you deserve.

To my Lovely Sister

You are the greatest present life has offered me, as you make my world so colorful and sparkling. Thanks for your motivation, for you have always thought high of me.

Contents

	Page No.
•	List of Abbreviationsi
•	List of Tablesiii
•	List of Figuresv
•	Introduction
•	Aim of the Work5
-	Review of literature
	• Chapter 1: Reperfusion Injury 6
	• Chapter 2: Therapeutic Strategies for Reducing
	Myocardial Reperfusion Injury23
•	Patients and Methods40
•	Results
•	Discussion
•	Study Limitations
•	Summary
•	Conclusion
•	Recommendations
•	References
	Arabic summary

List of Abbreviations

5-HD 5-hydroxydecanoate

ACEIS Angiotensin Converting Enzyme

Inhibitors

ARBs Angiotensin receptor blockers

ATP Adenosine Triphosphate

BBs Beta adrenoreceptors blockers

Ca Calcium

CABG Coronary Artery Bypass Grafting

CAD Coronary Artery Disease

CK MB Creatine Kinase Myocardial Band

CKT Creatine Kinase Total

Cmax Peak plasma level of a drug

ECG Electrocardiogram

IC Intracoronary

IONA Investigation of nicorandil in

angina

IRA Infarct-related artery

IV Intavenous

JACC Journal of American College of

Cardiology

K Potassium

K-ATP Adenosine triphosphate sensitive

potassium Channel

LAD Left Anterior Descending artery

LV EF% Left Ventricule Ejection Fraction%

LV Left Ventricule

MACE Major Adverse Cardiac Events

MAPKs Mitogen-activated protein kinases

MI Myocardial infarction

mPTP Mitochondrial Permeability Transition

Pore

MVO Microvascular obstruction

Na Sodium

PCI Percutaneous Coronary Intervention

PPCI Primary Percutaneous Coronary

Intervention

PTCA Percutaneous Coronary Transluminal

Angioplasty

PVCs Premature Ventricular Contractions

PVF Peak volume flow

RI Reperfusion injury

RIC Remote Ischemic Conditioning

RISK Reperfusion injury salvage kinases

ROS Reactive oxygen species

STEMI ST-segment elevation myocardial

infarction

STR ST segment elevation resolution

TFG TIMI Flow Grade

TIMI Thrombolysis in Myocardial Infarction

VF Ventricular Fibrillation

VT Ventricular Tachycardia

List of Tables

Figure No.	Title	Page No.
1.	TIMI grade coronary flow.	47
2.	Myocardial Blush Grade.	48
3.	TIMI thrombus grade.	48
4.	AGE between 2 groups.	52
5.	Sex distribution between 2 groups.	54
6.	Risk factors for coronary artery disease distribution between 2 groups.	55
7.	Pre-PCI TIMI flow.	57
8.	Proximal LAD occlusion.	58
9.	Presence of significant other vessels lesions.	59
10.	Pain to wire crossing time between 2 groups.	60
11.	Presence of heavy thrombus burden.	61
12.	Use of balloon of predilatation.	62
13.	Aspiration catheter use.	63
14.	Glycoprotein IIb/IIIa receptors blockers use.	64
15.	Occurrence of slow flow / no reflow.	65
16.	TIMI flow at the end of the procedure.	66

17.	Occurrence of High MBG at the end of the procedure.	67
18.	Incidence of Malignant Reperfusion arrhythmias.	68
19.	Occurrence of STR between 2 groups.	69
20.	Peak levels of CKT and CK MB between 2 groups.	70
21.	Incidence of early peaking of cardiac enzymes.	72
22.	LV EF% between 2 groups.	73
23.	In-hospital follow up data.	74
24.	One month follow up data.	76

<u>List of Figures</u>

Figure No.	Title	Page No.
1.	The individual contributions of acute myocardial ischemic injury and myocardial reperfusion injury to final MI size.	6
2.	Schematic illustration of acute myocardial IRI.	9
3.	Rapid restoration of Ph effects.	14
4.	Chemical structure of Nicorandil.	36
5.	Age between 2 groups.	53
6.	Sex distribution between 2 groups.	54
7.	Risk factors for coronary artery disease distribution between 2 groups.	56
8.	Pre-PCI TIMI flow.	57
9.	Proximal LAD occlusion.	58
10.	Presence of significant other vessels lesions.	59
11.	Pain to wire crossing time between 2 groups.	60
12.	Presence of heavy thrombus burden.	61
13.	Use of balloon of predilatation.	62
14.	Aspiration catheter use.	63

15.	Glycoprotein IIb/IIIa receptors blockers use.	64
16.	Occurrence of slow flow / no reflow between two groups.	65
17.	TIMI flow at the end of the procedure.	66
18.	Occurrence of High MBG at the end of the procedure.	67
19.	Incidence of Malignant Reperfusion arrhythmias.	68
20.	Incidence of STR between 2 groups.	69
21.	Peak levels of CKT between 2 groups.	71
22.	Peak levels of CK MB between two groups.	71
23.	Incidence of early peaking of cardiac enzymes.	72
24.	LV EF% between 2 groups.	73
25.	In-hospital follow up data.	75
26.	One month follow up data.	77

Abstract:

Background: Nicorandil in conjunction with primary percutaneous coronary intervention (PPCI) has been reported to exert cardioprotective effect in patients with ST segment elevation myocardial infarction (STEMI). Intravenous and intracoronary Nicorandil administration with PPCI have been reported to reduce reperfusion injury consequences and improve cardiac function in patients with STEMI even on the long term .However, there is limited information on the use of oral Nicorandil in STEMI patients .

Objective: The Aim of this study was to evaluate Cardioprotective effect of a single oral dose of Nicorandil 20 mg given before primary PCI in patients presenting with a first anterior STEMI within 6 hours from symptoms onset.

Material and Methods: This study is a Prospective multicenter Study that included 80 Patients who were presenting with first anterior STEMI and undergone primary PCI as a myocardial reperfusion method in the period between June 2016 and May 2018. Patients were divided into two groups: Group A (40 patients) was the Study group which received Nicorandil 20mg single oral dose immediately on admission with the loading doses of aspirin and clopidogril prior to the PPCI procedure and Group B (40 patients) was the Control group that did not receive Nicorandil.

Results: There were no differences between two groups as regards demographic data or risk factors for coronary artery disease. There was statistically significant lower peak levels of cardiac enzymes in group A compared to group B. Peak level of CKT in group A was 1899.1 ± 601.000 compared to 2386.300 ± 844.318 in group B , (P=0.004) .The peak level of CK MB in group (A) was 264.100 ± 86.982 compared to 329.325 ± 147.404 in group B (P=0.018) .The left ventricle ejection fraction in the study group (43.550±5.114) was found to be higher than control group (40.325±5.753) , (P=0.010).

Conclusion: Single dose of Nicorandil 20 mg administered orally and given to patients who were presenting with a first anterior STEMI within 6 hours from symptoms onset prior to reperfusion with primary PCI had a significant cardioprotective effect in the form of higher left ventricular ejection fraction and lesser release of cardiac enzymes (CKT and CK MB) compared to control group which reflects more myocardial salvage of the area at risk and lesser reperfusion induced myocardial damage.

Key words: Nicorandil, STEMI, Reperfusion Injury, Primary PCI.

NTRODUCTION

Despite the major advances against ischemic heart disease over the past 50 years, myocardial infarction remains a leading cause of death and disability worldwide even into the 21st century. In patients presenting with an acute ST-segment elevation myocardial infarction (STEMI), the most effective therapeutic intervention for reducing ischemic injury, limiting the size of myocardial infarction (MI), preserving the left ventricular (LV) systolic function and preventing the onset of heart failure is timely and effective myocardial reperfusion using either thrombolytic therapy or Primary Percutaneous Coronary Intervention (PPCI). (1)

Effective reperfusion of the occluded coronary artery led to a reduction of myocardial necrosis and significantly improved the prognosis in acute STEMI ⁽²⁾. For the past two decades mortality and morbidity in STEMI patients were reduced significantly and is mainly due to improvements in the availability and efficacy of reperfusion Therapy, in particular PPCI. Currently, in addition to primary angioplasty with stent implantation and manual aspiration thrombectomy, modern fast acting antiplatelet agents and anticoagulants have been widely introduced into clinical practice, which further improved the patency of the infarct-related artery (IRA) and the efficiency of reperfusion.⁽³⁾