

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Comparative Study between Pneumatic and Holmium Laser Lithotripsy in Treatment of Ureteric Stones

Thesis

Submitted for Partial Fulfillment of Master Degree in Urology

Presented by

Moataz Bellah Mohamed Adel

M.B.B.Ch., Faculty of Medicine Ain Shams University- Cairo – Egypt.

Under Supervision of

Prof. Dr. Mohamed Esmat

Professor of Urology - Faculty of Medicine Ain Shams University- Egypt

Dr. Karim Omar Elsaeed

Lecturer of Urology - Faculty of Medicine Ain Shams University - Egypt

Faculty of Medicine -Ain Shams University 2020

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to **Prof. Dr.**Mohamed Esmat Professor of Urology Faculty of Medicine Ain Shams University, for his kind help, sincere encouragement and guidance.

My deep thanks go to **Dr. Karim Omar Elsaeed** Lecturer of Urology - Faculty of

Medicine Ain Shams University, for his

constant help.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Study	4
Review of Literature	
Anatomy of the Kidney and Ureter	5
Urolithiasis	11
Ureteroscopy	22
Lithotripsy Devices	36
Materials and Methods	45
Results	64
Discussion	75
Summary and Conclusion	79
References	78
Arabic Summary	 -

List of Tables

Table No	. Title Pag	e No.
	X-ray characteristics of the stones Stone composition	
Table (3):	High risk stone formers	16
Table (5):	Hydronephrosis classification	47 al
Table (7):	complications	g
Table (8):	Comparison between two groups as regar stone location, mean number of stones an mean stone burden	d
Table (9):	Comparison between two groups as regarmean operative period (MOP) and Hospita Stay (HS)	al
Table (10):	Comparison between two groups as regar JJ. Application, & intraoperative complication (Mucosa Injury, Ston Migration and Perforation Avulsion)	re .e
Table (11):	Comparison between two groups as regar ESFR and LSFR	
Table (12):	Comparison between two groups as regar postoperative complications (hematuria stricture, fever and LUTS)	a,

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Intra renal structure of kidney	6
Figure (2):	Representation of the possible (mc) arrangements	
Figure (3):	The ureter demonstrating sites functional or anatomic narrow ureteropelvic junction (UPJ) vessels, and the ureterovesic (UVJ)	ving at the the iliac al junction
Figure (4):	Top, 5 Fr open-ended ureteral ca	theter25
Figure (5):	Facial Dilators	27
Figure (6):	One-step ureteral balloon dila attached to a locking screw syrin	
Figure (7):	Ureteromat	29
Figure (8):	Modern semirigid ureterose separate working/irrigation chan	-
Figure (9):	Modern semirigid ureterose separate working/irrigation chan	-
Figure (10):	Flexible ureteroscope	32
Figure (11):	Flexible ureteroscopes with primary deflection (above) and primary deflection (below)	exaggerated
Figure (12):	Various types of forceps and basl	kets34
Figure (13):	Pneumatic lithotripsy	36
Figure (14):	Cystoscopy with 22 Fr and 25 Fr	sheath48
Figure (15):	Semirigid ureteroscopy	49
Figure (16):	Flexible ureteroscopy	49
Figure (17):	Different guidewires	
Figure (18):	Teflon sequential dilators	51

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (19):	Balloon dilator	51
Figure (20):	JJ catheter	52
Figure (21):	Ureteric catheter	52
Figure (22):	Laser fiber	53
Figure (23):	Ureteral access sheath	53
Figure (24):	Comparison between two groups mean age	-
Figure (25):	Comparison between two groups gender.	
Figure (26):	Comparison between two groups stone location.	_
Figure (27):	Comparison between two groups mean number of stones and mburden	ean stone
Figure (28):	Comparison between two groups MOP	
Figure (29):	Comparison between two groups HS.	_
Figure (30):	Comparison between two groups JJ. Application, & intr complication (Mucosa Injury Migration and Perforation Avulsion	aoperative y, Stone
Figure (31):	Comparison between two groups ESFR and LSFR	•
Figure (32):	Comparison between two groups postoperative complications (1 stricture, fever and LUTS)	nematuria,

List of Abbreviations

Abb.	Meaning
ANOVA	A one-way analysis of variance
BMI	Body mass index
BUN	Blood urea nitrogen
CBC	Complete blood count
CRP	C-reactive protein
CTUT	Computed tomography urinary tract
EHLs	Electrohydraulic lithotriptors
ESFR	Early stone free rate
ESWL	Extra corporeal shock wave lithotripsy
HFU	Hounsfield unit
Ho: YAG	Holmium: yttrium aluminum garnet
KUB	Kidney-ureter-bladder
LL	Laser lithotripsy
LSFR	Late stone free rate.
MET	Medical expulsive therapy
NCCT	Non-contrast-enhanced computer tomography
NSAIDs	Nonsteroidal anti-inflammatory drugs
PCNL	Percutaneous nephrolithotomy
PH	Primary hyperoxaluria
PLs	Pneumatic lithotriptors
PS	Physical status
PTFE	Polytetrafluoroethylene
RIRS	Retrograde intrarenal surgery
RTA	Renal tubular acidosis
SD	Stander deviation
SFRs	Stone free rates

List of Abbreviations Cont...

Abb.	Meaning	
SPSS	Statistical Program for Social Science	
ULs		
UPJ		
URS	Ureterorenoscope	
US	Ultrasound	
UVJ		

INTRODUCTION

Trolithiasis is a very common and complex disease which needs a lot of researches to understand its epidemiology, pathogenesis, and management (*Johnson et al.*, 1979).

Urinary tract stone disease incidence differs between countries due to genetic, dietary and climatic factors. Incidence varies from 1-20 %. And lifetime prevalence differ between male and female (12% and 6% respectively) (*Trinchieri et al.*, 2003).

Urinary stones may be found at any part of urinary tract (kidney, ureter, bladder and even urethra). Stone site and other factors affect the decision to choose a treatment modality. The treatment modalities for stones in upper ureter and kidney are corporeal shock (ESWL), extra wave lithotripsy ureterorenoscope (URS). percutaneous nephrolithotomy (PCNL) and open or laparoscopic surgery (Tiselius et al., *2001*).

Technological improvement in tools of retrograde intrarenal surgery (RIRS) as flexible, semirigid ureteroscopes and lithotripsies improves techniques and successes of RIRS (*Wickham*, 1993).

Ureterorenoscope is a less invasive modality of treatment that used for ureteric or renal stones. It may be used antegrade or retrograde. Nowadays semirigid ureteroscope can be used to treat all ureteric stones but flexible ureteroscope is preferred due to improvement in its technology, quality and tools (*Troy et al.*, 2004).

Stones that can't be extracted directly by forceps and baskets must be disintegrated by lithotripsies. There are many types of lithotripsies as Electrohydraulic lithotripsy, Pneumatic lithotripsy, Ultrasonic lithotripsy and laser lithotripsy each have their advantages and disadvantages (*Santa-Cruz et al.*, 1998).

Laser is abbreviation to Light Amplification by Stimulated Emission of Radiation. Laser energy is absorbed and converted to heat producing its effect. Laser lithotripsy used in urology since 1990s. Complications of laser lithotripsy with ureterorenoscope are generally due to the technique itself but not the laser, however ureteral perforation noted (*Parsons et al.*, 1966).

Holmium: yttrium aluminum garnet (Ho: YAG) laser is the most commonly used laser for lithotripsy nowadays. It has photothermal mechanism of action and its energy absorbed by water (*Vassar et al.*, *1999*) with wavelength 2140 nm and tissue penetration 400 µm (*Van Iersel et al.*, *1996*).

It is the preferred laser as it is the most effective. Ho: YAG laser is used with all ureteroscopes as it has small fibers. It can fragment all stones with different compositions and hardness (HFU) in all sites of urinary tract. Also it has the advantages of less need to anti-migration devices (*Sofer et al.*, 2002).

Ho: YAG laser not only used for urinary tract lithotripsy but also used for treatment of various urological (Yamada et al., 2003; Yamada et al., 2001; Krambeck et al., 2010) and non-urological diseases (Ponsky et al., 2001; Teichman et al., 2001) as it cases cutting and coagulation to tissues at the same time.

Laser settings or techniques are an important issue of researches as with increased pulse energy many disadvantages appear.

Stone dusting is to convert stone to tiny fragments or dust by decreasing energy and varying frequency to allow these tiny fragments to pass spontaneously.

Laser fibers are damaged with energy > 1 J due to thermal effect (*Vassar et al., 1999*; *Spore et al., 1999*). Fragment size is a challenging problem to urologists as it correlate or affect stone free rates (SFRs), as small fragment size result in high SFRs (*Sea et al 2012*). Stone retropulsion or migration increases with high energy.

Several studies were done using different laser settings. But all suggest that energy < 1 J result in small fragment size, decrease migration and decrease laser fiber damage (*Vassar et al.*, 1999).

AIM OF THE STUDY

The aim of this study was to compare the efficacy & safety of holmium laser and pneumatic lithotripsy used in the ureteroscopic treatment of ureteral stones.