

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Colchicine on Serum Levels of the Inflammatory Markers: C-Reactive Protein and Interleukin-6 in Patients with Chronic Rheumatic Heart Disease

Thesis

Submitted in the Partial Fulfillment for Master Degree in Cardiovascular Medicine

Presented by Mahmoud Saied Mahmoud Badr MB.BCH

Supervisors

Prof. Dr. Osama Abdel Aziz Rifaie

Professor of Cardiovascular Medicine Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Ahmed M. Abdel Sallam

Assistant Professor of Cardiovascular Medicine Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Haithem Galal Mohammed

Assistant Professor of Cardiovascular Medicine Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Osama Abdel Aziz Rifaie**, Professor of Cardiovascular Medicine Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Dr. Ahmed M. Abdel Sallam, Assistant Professor of Cardiovascular Medicine Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Assist. Prof. Dr. Haithem Galal Mohammed, Assistant Professor of Cardiovascular Medicine Faculty of Medicine, Ain Shams University, Ain Shams University, for his great help, active participation and guidance.

Mahmoud Saied

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Study	3
Review of Literarture	
Serum Inflammatory Markers	4
Rheumatic Heart Disease	11
Colchicine As Anti-Inflammatory	22
Participants and Methods	27
Results	31
Discussion	46
Conclusion	52
Limitation of the Study	53
Summary	54
References	58
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Revised Jones criteria. (24)	17
Table (2):	Doppler findings in rheumatic valve	ulitis• ⁽⁴⁶⁾ 19
Table (3):	Morphological findings on echocar rheumatic valvulitis. (24)	
Table (4):	Demographic data regarding particle and gender	-
Table (5):	Control group versus patient group age and gender	-
Table (6):	Shows echocardiographic valvular of	lata34
Table (7):	Echocardiographic data	34
Table (8):	Shows correlation between copatients groups echo data	
Table (9):	Variable penicillin prophylaxis du regimens.	
Table (10):	Shows high significance correlation baseline of serum levels of CR between patients and control grostarting colchicine treatment	CP & IL-6 oups before
Table (11):	Shows high significance correlations serum inflammatory markers before receiving colchicine treatment	e and after
Table (12):	Correlation between different regimens and levels of serum inf markers before and after receiving treatment	flammatory g colchicine

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Shows demographic data regardin	
Figure (2):	Demonstrate ejection fraction signetween patient and control group	
Figure (3):	Shows high significance control starting colchicine treatment	rum level ıps before
Figure (4):	Demonstrate high significance of between the baseline of IL-6 set between patients and control groustarting colchicine treatment	rum level ıps before
Figure (5):	Demonstrate high significance of between serum CRP level before receiving colchicine treatment	and after
Figure (6):	Demonstrate high significance of between serum IL-6 level before receiving colchicine treatment	and after
Figure (7):	Demonstrate high significance of between penicillin regimen and of before starting colchicine treatment	CRP level
Figure (8):	Demonstrate high significance of between penicillin regimen and of after receiving colchicine treatment	CRP level
Figure (9):	Demonstrate significance of between penicillin regimen and before starting colchicine treatment	IL-6 level
Figure (10):	Demonstrate significance of between penicillin regimen and after receiving colchicine treatment	IL-6 level

List of Abbreviations

Abb.	Full term
ARF	Acute rheumatic fever
	. Helper T lymphocytes
	. Cytotoxic T cells
	. Central nerve system
	. C-reactive protein
ELISA	. Enzyme-linked immunosorbent assay
	. Erythtocyte sedimentation rate
GA	. Gestational age
GAS	. Group A beta-haemolytic streptococci
IKBs	. Inhibitory protiens
IL	. Interleukin
LAVi	. Left atrial volume index
MASP	. MBL-associated serine proteases
MBL	. Mannose-binding lectin
MHC	. Major histocompatibility complex
NF-KB	. Nuclear factor kappa B
NYHA	. New York Heart Association
RHD	. Rheumatic heart disease
SEC	. Spontaneous echo contrast
TGF-β	. Transforming growth factor-β
TNF	. Tumor necrosis factor
Treg	. T regulatory
VNTRs	. Variable number of tandem repeats

Introduction

heumatic fever is a systemic autoimmune disorder related to prior streptococcal infection and is the leading cause of acquired heart disease in those under the age of 40 years living in developing nations. The incidence of rheumatic fever and prevalence of rheumatic heart disease vary substantially among countries. It is an inflammatory reaction that occurs approximately 10 to 21 days after throat infection with virulent strains of Group A beta-haemolytic streptococci. It affects large joints (arthritis), the heart (carditis) and less frequently the brain (chorea), skin (erythema marginatum) and subcutaneous tissues. Rheumatic heart disease refers to the functional and structural changes of the heart muscle and valves affected by rheumatic fever. (1)

Rheumatic fever has a marked tendency to recur following new group A streptococcal upper respiratory tract infection. Recurrence has a high risk of chronic heart lesions or worsening lesions in patients with previous rheumatic heart disease. The severity of rheumatic heart disease and the prognosis depend on the extent of the carditis and the frequency of recurrent attacks. There is much evidence from randomized controlled trials concerning the primary prevention of rheumatic fever or the treatment of pharyngitis caused by Group A beta-haemolytic streptococci (GAS) but less data is available concerning secondary prevention of the disease. (1)

C-reactive protein (CRP) is increased in patients with acute rheumatic fever; High levels of hs-CRP in patients with chronic rheumatic valve disease indicate the persistence of inflammation in the chronic phase. (2)

Inflammatory cytokines, as TNFa, IL-8 and IL-6, may play a pathogenic role in rheumatic fever. (3)

important contributor to Inflammation is an pathogenesis of rheumatic heart disease, RHD a disorder of heart valves caused by a combination of immune, genetic and environmental factors. Cytokines are important mediators of inflammatory and immune responses. The role of cytokine gene polymorphisms and their potential usefulness as biomarkers in RHD patients as TNF-α and IL-6 gene polymorphisms may be useful markers for the identification of individuals susceptible to RHD, these individuals could be provided aggressive prophylactic intervention to prevent the morbidity and mortality associated with RHD. (4)

AIM OF THE STUDY

To assess the effect of colchicine as an anti-inflammatory drug on serum levels of inflammatory markers CRP and IL-6 in patient with chronic rheumatic heart disease. Thus possible ameliorating of the chronic inflammatory state in chronic RHD.

Colchicine is an anti-inflammatory agent which is widely used for the treatment of gout and also used extensively for familial Mediterranean fever, Behcet's disease and pericarditis. Its use in the management of gout has increased due to the widespread recommendation that it be used as a gout flare prophylaxis when urate-lowering therapy is initiated. It is used continuously for long periods of time in individuals with familial Mediterranean fever and Behcet's disease. (61)

Recently, The COLCOT clinical trial studied the efficacy and safety of colchicine after a myocardial infarction the authors concluded that colchicine may be effective following a myocardial infarction to decrease the risk of recurrent ischemic events. In addition, the colchicine appears to be well tolerated and safe in the short term. ⁽⁶¹⁾

Chapter 1

SERUM INFLAMMATORY MARKERS

Role of CRP as inflammatory mediator:

reactive protein (CRP) secreted by the liver in response to inflammation, tissue injury and infection. It decreases rapidly after resolution of the condition. It plays a role in the innate immune system by binding to Fc receptors and acting as opsonin for pathogens which lead to release of proinflammatory cytokines. (5)

C-reactive protein (CRP) is an acute phase protein which rises in response to inflammation. CRP binds to phosphocholine in damaged tissues, nuclear antigens and to certain types of organisms.

C-reactive protein (CRP) binds to stimulatory receptors (Fc gammaRI and FcgammaRIIa) increasing phagocytosis and cytokines release, and binds to inhibitory receptor (FcgammaRIIb) which blocks the activatory signal. (6)

C-reactive protein (CRP) rises 4-6 hours after inflammatory trigger and reaches its peak after 36-50 hours. (7)

With the resolution of inflammatory trigger CRP levels decrease with relatively short half-life of 18 hours, this half-life is constant so it determines severity of the underlying cause. CRP rises with many conditions such as inflammation,

infection, trauma, tissue damage, malignancies and autoimmune diseases so elevation of CRP is not diagnostic for specific disease but it is beneficial as a screening test. (8)

Role of interleukins as inflammatory mediators:

Interleukins are cytokines that have an important role in immune response; they are released by helper T lymphocytes (CD4+), monocytes, macrophages and endothelial cells.

Interleukins help in development and differentiation of T and B lymphocytes and hematopoietic cells. (9)

Immunocytes exchange signals among themselves. Some signals are due to direct contact between cells. Others are through chemical messengers called cytokines which circulate in blood. (10)

Interleukin-6:

IL-6 is released as a result of tissue damage or inflammation through stimulation of acute phase reactions and hematopoiesis and its release is stopped when homeostasis is restored. IL-6 is considered inducer of acute phase reactants and show correlation with CRP. ⁽³⁾ Desregulated continuous release of IL-6 occur in autoimmune diseases, chronic inflammatory diseases and cancers. ⁽¹¹⁾

IL-6 is one of most important inflammatory cytokines, it has a unique signalling through two pathways, one is via a