

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

EFFECT OF ALUMINUM, TUNGESTEN AND COBALT ADDITION ON THE PROPERTIES OF SINTERED IRON BASED POWDER

By

Reham Salah Abd EL-Salam Soliman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In Mechanical Design and Production Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

EFFECT OF ALUMINUM, TUNGESTEN AND COBALT ADDITION ON THE PROPERTIES OF SINTERED IRON BASED POWDER

By
Reham Salah Abd EL-Salam Soliman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

Mechanical Design and Production Engineering

Under the Supervision of

Ass. Prof. Emad El-Kashif

Ass. Prof. Ahmed Shash

Mechanical Design and Prod. Dept,
Faculty of Engineering-Cairo University

Mechanical Design and Prod. Dept, Faculty of Engineering-Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2020

EFFECT OF ALUMINUM, TUNGESTEN AND COBALT ADDITION ON THE PROPERTIES OF SINTERED IRON BASED POWDER

By

Reham Salah Abd EL-Salam Soliman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

Mechanical Design and Production Engineering

Approved by the Examining Committee	
Ass. Prof. Emad.F. El-Kashif Thesis Main Advisor	
Ass. Prof. Ahmed yehia Shash Advisor	
Prof. Dr. Mahmoud Adly Internal Examiner	
Prof. Dr. Morsy Amin Morsy External Examiner	

(professor of central metallurgical institute (CMRDI)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Reham Salah Abd EL-Salam

Date of Birth: 2/1/1993 **Nationality:** Egyptian

E-mail: Salahreham22@gmail.com

Phone: 01063064673

Address: 17 A- Selim el awal St ,Sray El Qoba , Cairo

Registration Date: 1/10/2014 **Awarding Date:** // 2020

Degree: Master of Science

Department: Mechanical Design and Production Engineering

Supervisors: Ass. Prof. Emad El-Kashif

Ass. Prof. Ahmed Shash

Examiners: Ass. Prof. Emad El-Kashif (Thesis main advisor)

Ass. Prof. Ahmed Shash (advisor)
Prof. Dr Mahmoud Adly (Internal examiner)
Prof Dr. Morsy Amin Morsy (External examiner)

(professor of central metallurgical institute (HELWAN)

Title of Thesis:

EFFECT OF ALUMINUM , TUNGESTEN AND COBALT ADDITION ON THE PROPERTIES OF SINTERED IRON BASED POWDER

Key Words:

Iron composites; Tribological properties; Friction rate, Wear rate

Summary:

The aim of this work is to study the effect of aluminum, Tungsten and cobalt on the mechanical properties of iron based composites. Five samples were prepared by milling for 20 h followed by cold pressing then sintering at temperatures range from 1000 to 1250 °C. The samples were characterized using density measurements, SEM, Wear test and friction coefficient measurements. Sample five (5%W, 4% AL and 1% CO) showed the highest wear resistance, largest hardness, fine grain size and the lowest friction coefficient compared with other samples which recommend this sample to be a good candidate for applications require high wear resistance and moderate friction coefficient.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.
I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date://
	Signature:

Acknowledgments

My thanks and praise goes to my god for his help during the conduction of this

work.

I wish to express my thanks and my love to my family and my daughter without

their love and encouragement; I would be never able to complete this work.

Thank everyone, who helped me in achieving this work. I would like to present

my gratitude to my supervisors on their support to pinpoint the main points of thesis

and their kind encouragement and valuable suggestions throughout this work.

I would like to express my warmest gratitude to my distinguished professor for

true assistance and his wise and vigorous super vision.

I would like to express my deep appreciation in particular to My great teacher

Prof. Dr. Emad El-kashif ,and my examiners Prof. Dr. Mahmoud Adly and Prof

.Dr. Morsy Amin Morsy and my colleagues and the technicians who helped me take

the tests and get the results of the samples.

Reham salah

Giza

2020

ii

Table of Contents

List of Tables	. ,
List of Figures	. ,
Nomenclature	. i
Abstract	
CHAPTER 1: INTRODUCTION	••
1.1.INTRODUCTION	
1.2.POWDER METALLURGY	•
1.3 POWDER PRODUCTION	
1.3.1.Atomization methods	
1.3.1.1.Water atomization	
1.3.1.2 Gas atomization.	
1.3.1.3 Oil atomization.	
1.3.1.4 Mechanical method (milling).	
1.4 MIXING OF POWDER METALLURGY	
1.5 COMPACTION OF POWDER METALLURGY	
1.5.1 Consolidation pressure.	
1.5.2 Factors affect on powder compressibility	
1.5.2.1.Filling height.	
1.5.2.2.Flow rate	
1.5.2.3.Appearent Density.	
1.6 SINTERING PROCESS	
1.6.1 Solid state sintering.	, .
1.6.2 Stages of sintering.	
1.6.2.1 Initial stage.	
1.6.2.2. Intermediate stage.	
1.6.2.3. Final stage.	
1.7 FACTOR AFFECTING ON SINTERING PROCESS	
1.7.1 Sintering temperature	· ·
1.7.2 Sintering time	
1.7.3 sintering atmosphere	
1.7.4 Particle size	

	1.7.5 Particle shape
	1.7.6 Green Density
	1.8 WEAR TEST.
	1.8.1 Factors which affect on nature and extent of wear & friction
	1.8.2 Types of wear.
	1.8.3 wear evaluation of friction materials
Cl	HAPTER 2 : LITERATURE REVIEW
	2.1.INTRODUCTION.
	2.2 IRON BASED POWDER
	2.3 EFFECTS OF SINTERING TEMPERATURE AND PARTICLE
	SIZE
	2.4 SINTERING TEMPERATURE CALCULATIONS
	2.5 OXIDATION RESISTANCE OF IRON BASED COMPOSITE
	2.6 CHARACTERIZATION OF IRON BASED POWDER
	2.7 POWDER SELECTION
	2.8 PREVIOUS WORKS
Cl	HAPTER 3 : THE EXPERIMENTAL WORK
	3.1 INTRODUCTION.
	3. 2 EXPERIMENTAL WORK PROCEDURES
	3.3 ROLE OF EACH CONSTITUENT USED IN THE COMPOSITE
	MATERIAL
	3.4 MATERIAL POWDERS
	3.5 APPARATUS USED IN EXPERIMENTAL WORK
	3.5.1 Mixer
	3. 5.2 Powder compaction (Cold compaction)
	3.5.3 Sintering of compacted samples
	3.5.4 density of sintered samples
	3.5.5 x-ray diffraction
	3.5.6 scanning electron microscopy
	3.6 MECHANICAL CHARACTERIZATION
	3.6.1 Surface hardness measurement
	3.7 TRIBOLOGICAL CHARACTERIZATION
C	HAPTER 4: RESULTS AND DISCUSSION

4.1 SINTERING PROCESS EXPERIMENT AND RELATIVE	35
DENSITIES	
4.2 MICROSTRUCTURE	38
4. 2.1 Microstructure of the first sample	38
4. 2.2 Microstructure of the second sample	39
4. 2.3 Microstructure of the third sample	40
4.2.4 Microstructure of the forth sample	41
4. 2.5 Microstructure of the fifth sample	42
4.3 X-RAY DIFFRACTION	43
4. 3.1 X-ray diffraction of the first sample	43
4. 3.2 X-ray diffraction of the second sample	44
4.3.3 X-ray diffraction of the third sample	44
4. 3.4 X-ray diffraction of the forth sample	45
4.3.5 X-ray diffraction of the fifth sample	45
4.4 HARDNESS RESULT	46
4.5 WEAR RATE ESTIMATION	47
4.6 FRICTION COEFFIENT	48
4.7 COMPRESSIVE STRENGTH	49
CHAPTER 5: CONCLUSION	50
REFERENCES	51

List of Tables

Table 1.1: Compacting pressures for some metal powders	6
Table 1.2: Pin on Disc tester	18
Table 3.1: The description materials of the samples	26
Table 3.2: The constituents composite materials of the samples	26
Table 3.3: The chemical composition of the cast iron disc	33
Table 3.4: Testing conditions for tribology characterizations	33

List of Figures

Figure 1.1: Sheet of powder metallurgy processing.	
Figure 1.2: Water atomization system	
Figure 1.3: Gas atomization system.	
Figure 1.4: powder production by mechanical milling	
Figure 1.5: Blending and mixing equipments	
Figure 1.6: A simplified view of the stages of metal powder compaction	
Figure 1.7: Sketch of the density versus compaction pressure showing the	
key stages and declining compressibility as the density increased	
Figure 1.8: Cold isostatic pressing.	
Figure 1.9: Hall flow meter.	
Figure 1.10: Sintering stage.	
Figure 1.11: Two sphere model of sintering.	
Figure 1.12: Definition of the neck growth in terms of the two particle	
sintering geometry	
Figure 1.13: The microstructure model used for intermediate stage sintering	
Figure 1.14: Sequence of steps leading to transport	
Figure 1.15: Effect of particle size on sintering.	
Figure 1.16: Wear stages.	
Figure 1.17: Friction test properties.	
Figure 2.1: Fe-W phase Diagrame.	
Figure 2.2: Co-W phase Diagrame	
Figure 2.3 : AL-Co phase Diagrame.	
Figure 3.1 Rod mill used for mixing powders	
Figure 3.2: Hydraulic pressing using to press the samples	
Figure 3.3: The sample produced by hydraulic pressing	
Figure 3.4: Tube furance for sintering.	
Figure 3.5: Density Test device.	
Figure 3.6: X-ray diffract meter	
Figure 3.7: Scanning analysis device.	
Figure 3.8: Vickers surface hardness tester.	
Figure 3.9: Arrangement of the pin on disc tester and its diagnostic	

instrumentation system	
Figure 4.1: Relative densities of first trial sintering for all samples at 1100 °C	35
Figure 4.2 Relative densities of second trial sintering for all samples at 1150 °C	36
Figure 4.3:Rlative density of samples sintered at 1210 °C	37
Figure 4.4: SEM microstructure of First sample	38
Figure 4.5: SEM microstructure of second sample	39
Figure 4.6: SEM microstructure of third sample	40
Figure 4.7: SEM microstructure of forth sample	41
Figure 4.8: SEM microstructure of fifth sample	42
Figure 4.9: X-ray diffraction of the first sample	43
Figure 4.10: X-ray diffraction of the second sample	44
Figure 4.11: X-ray diffraction of the third sample	44
Figure 4.12: X-ray diffraction of the forth sample	45
Figure 4.13: X-ray diffraction of the fifth sample	45
Figure 4.14: Hardness values for all samples	46
Figure 4.15: Wear rate estimation result for all samples.	47
Figure 4.16: Friction coefficient of different samples	48
Figure 4.17: The compressive strength results for all samples	49