

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Predictors of gait impairment in Parkinson's disease

Thesis

Submitted for Partial Fulfillment of Master Degree in **Neuropsychiatry**

By

Engy Nady Sadik

MB, BChAin Shams University

Under Supervision of

Prof. Dr. Ali Soliman Ali Shalash

Professor of Neurology Faculty of Medicine - Ain Shams University

Dr. Hossam-eldin Mahmoud Afify

Lecturer of Neurology Faculty of Medicine - Ain Shams University

Dr. Eman Hamed AbdEldayem

Lecturer of Neurology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2020

Acknowledgments

First and foremost, I feel always indebted and grateful to **Allah** for giving me the will and the strength to complete this study.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Ali Soliman Ali Shalash**, Professor of Neurology and Psychiatry, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision

I wish to express my great thanks and gratitude to **Dr. Hossam-eldni Afify**, Lecturer of Neurology and Psychiaty, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Dr. Eman Hamed,** Lecturer of neurology and Psychiatry, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, for their valuable help and support.

Finally I would present all my appreciations to my patients, without them, this work could not have been completed.

Engy Nady Sadik

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
List of Appendices	v
Introduction	1
Aim of the Work	5
Review of Literature	
Parkinson's disease motor and non-motor syn	nptoms6
Gait dysfunction in Parkinson's disease	24
Predictors of gait impairment in PD	45
Patients and Methods	56
Results	67
Discussion	103
Conclusion	111
Limitations and Recommendations	112
Summary	113
References	116
Appendices	I
Arabic Summary	

List of Abbreviations

Abbr.	Full-term
AD	: Alzheimer's disease
BBS	: Berg Balance Scale
BDI	: Beck depression inventory
CI	: Cognitive impairment
CMA	: Chaperone-mediated autophagy
CNS	: Central nervous system
ChE-I	: Cholesterase inhibitors
CSVDs	: Cerebral small vessel diseases
DBS	: Dep brain stimulation
DTI	: Diffusion tensor imaging
FOG	: Freezing of gait
FMRI	: Functional magnetic resonance imaging
GPi	: Globus pallidus internus
H & Y	: Hoehn and Yahr
LM	: Logical memory
MCI	: Mild cognitive impairment
MDS	: Movement Disorder Society
MDS-UPDRS	: Movement Disorders Society-Unified
	Parkinson's Disease Rating Scale
M-EDL	: Motor Aspects of Experiences of Daily Living
MLR	: Mesencephalic locomotor region
MMSE	: Mini mental state examination
MPTP	: 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine
MRI	: Magnetic resonance imaging
N-FOG	: New freezing of gait questionnaire
NM-EDL	: Non-Motor Aspects of Experiences of Daily
	Living
NMS	: Non-motor symptoms
NMSS	: Non-motor symptoms scale

PD : Parkinson's diseasePDD : PD with dementia

PET : positron emission tomography

PIGD : Postural instability and gait disturbance

PPNd: dorsal Pedunculopontine nucleus

QOL : Quality of life

REM : Rapid eye movement

SNr : Substantianigra pars reticularis

STN : Sub-thalamic nucleus

TDCS : Transcranial direct current stimulationTMS : Transcranial magnetic stimulation

UPDRS: Unified Parkinson's Disease Rating Scale

UPS : Ubiquitin-proteasome systemVPA : Verbal Paired Associates

WCST : Wisconsin card sorting testWMH : White matter hyperintensities

WMS : Wechsler Memory Scale

List of Tables

Table No.	Title	Page No.
Table (1):	NMS of PD	15
Table (2):	Assessment of walking in PD	34
Table (3):	Description of studies evaluation effects (other than levod gait in PD.	opa) on
Table (4):	Average/fast walking speed according to age	
Table (5):	Normative Reference values	62
Table (6):	Scoring of MMSE:	62
Table (7):	Demographics of the PD prinvolved in the study:	
Table (8):	Level of education, family functioning and risk factors patients involved in the study:	of the
Table (9):	Motor scales and NMSSs involved study	
Table (10):	Hoehn and Yahr staging scale:	70
Table (11):	Descriptive data of gait assescales:	
Table (12):	Cognitive assessment scales:	72
Table (13):	Percentage of MCI, dementia, and cognition according to MMSE	
Table (14):	Radiological findings of repatients:	74

Table (15):	Comparison between patients with no/slight gait Impairment & patients with prominent gait impairment as regards demographic & clinical data:
Table (16):	Comparison between patients with no/slight gait Impairment & patients with prominent gait impairment as regards other demographic & clinical data
Table (17):	Comparison between Patients with no/slight gait Impairment & Patients with prominent gait impairment as regard motor and NMSSs:
Table (18):	Comparison between Patients with no/slight gait Impairment & Patients with prominent gait impairment as regard cognitive scales:
Table (19):	Comparison between Patients with no/slight gait impairment & Patients with prominent gait impairment as regard gait assessment scales:
Table (20):	Comparison between patients with no/slight gait impairment & patients with prominent gait impairment as regard radiological scales:
Table (21):	Comparison between pt with no/slight FOG & pt with prominent FOG as regards demographic & clinical data: 86
Table (22):	Comparison between patients with no/slight FOG & patients with prominent FOG as regards other clinical data:

Table (23):	Comparison between patients with no/slight FOG & patients with prominent FOG as regards motor and NMSSs:
Table (24):	Comparison between patients with no/slight FOG & patients with prominent FOG as regards cognitive assessment scales
Table (25):	Comparison between patients with no/slight FOG & patients with prominent FOG as regards gait assessment scales 91
Table (26):	Comparison between patients with no/slight FOG & patients with prominent FOG as regards radiological scales92
Table (27):	Comparison of CI between patients with no/slight FOG & patients with prominent FOG as regards MMSE
Table (28):	Correlation between gait assessment scales and clinical characteristics:
Table (29):	Correlation between gait assessment scales and (motor and NMSSs)
Table (30):	Correlation between gait assessment scales and cognitive assessment scales: 99
Table (31):	Correlation between gait assessment scales and radiological findings: 100
Table (32):	Multiple regression analysis

List of Figures

Figure No	. Title	Page No.
Figure (1):	Pathogenesis of PD	10
Figure (2):	MDS clinical diagnostic criteria of	PD 12
Figure (3):	The basal ganglia-thalamo	
Figure (4):	Hoehn and Yahr staging scale	70
Figure (5):	Percentage of MCI, mild de moderate dementia and normal caccording to MMSE	ognition
Figure (6):	MMSE and DOI	82
Figure (7):	Comparison between patients with FOG & patients with prominent regards PDQ-39, WCST, Wechs MMSE, DOI.	FOG as ler test,
Figure (8):	Correlation between gait ass scales and clinical characteristics.	
Figure (9):	Correlation between gait ass scales and radiological findings	

Introduction

Parkinson's disease (PD) is the most common movement disorder besides essential tremor and the second most common neurodegenerative disease (**Tanner et al., 2000**). Egypt has higher prevalence of PD about 35 in 100000 as was studied previously (**Khedr et al., 2015**).

The prevalence of PD in industrialized countries is generally estimated at 0.3% of the entire population and about 1% in people over 60 years of age (**DeLau and Breteler**, **2006**). The prevalence increases with advancing age both for men and women ages (**De Rijk et al.**, **1997**). In Europe, the prevalence at ages 85–89 has been reported as 3.5% (**Clarke and Moore**, **2007**).

Braak et al. (2003) have mapped PD into six neuro-pathological stages. In the pre-symptomatic stages of the disease (stages 1–2), the inclusion bodies are confined to the medulla oblongata/pontine tegmentum and olfactory bulb/anterior olfactory nucleus. With progression of the disease, substantia nigra and other nuclei of the midbrain and forebrain become affected (stages 3–4). It has been suggested that patients develop clinical symptoms of the disease at this stage. In the end stage (stage 5–6), the process enters the neocortex with a wide variety of clinical manifestations (Braak et al., 2004).

Gait is a learned, complex and almost automatic task with limited involvement of higher cognitive control in healthy individuals till old age (Holtzer et al., 2006). These automatic and rhythmic motor activity patterns are generated by spinal networks of motor neurons and interneurons, also called the "central pattern generators" (Dietz, 2003). The activity of these spinal networks is modulated and initiated by the basal ganglia and the brainstem nuclei (Pahapill & Lozano, 2000). The basal ganglia and their two-way connections with cortical regions and cerebellum play a central role in movement initiation (Yogev-Seligman et al., 2008).

Gait difficulties are one of the first problems reported in people with PD, indicating the onset of disability (**Shulman et al., 2008**). Parkinsonian gait is often slow and characterized by short shuffling steps. Such problems are often accompanied by falling, which occurs in 40–70% of patients with PD (**Pickering et al., 2007**).

Understanding gait difficulties and developing criteria to identify people with PD who are at risk for falling are crucial to interrupt this devastating cycle of falls and injuries (Bloem et al., 2004).

Freezing of gait (FOG) is a disabling gait disorder defined as a "brief, episodic absence or marked reduction of forward progression of the feet despite the intention to walk" (Nutt et al., 2011).

Longer disease duration and greater disease severity often increase the likelihood of developing FOG (Giladi et al., 2001). FOG is less efficiently improved with dopaminergic medication (Espay et al., 2012), so early risk identification of FOG may improve its treatment in the near future (Rascol et al., 2011).

Cognitive impairment (CI) is a common non-motor complication of PD and is associated with significant disability for patients and burden for caregivers. Similar to motor symptoms, the characteristics of CI in PD can be quite variable, both in terms of what cognitive domains are impaired and the timing of onset and rate of progression (Aarsland et al., 2005).

PD with dementia (PDD) has a cross-sectional prevalence of approximately 30% and a life-long risk of up to 80% (**Hely et al., 2008**).

Research suggests an association between global cognition and postural instability/gait disturbance (PIGD) in PD, but the relationship between specific cognitive domains and PIGD symptoms is not clear (**Kellya et al., 2015**).

Moreover, fall risk factors among patients with PD include disease severity, motor function, and level of mobility (**Kerr et al., 2010**); studies also identified cognitive impairment as an independent contributing factor (**Allcock et al., 2009**).