

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

SAFAA MAHMOUD

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

SAFAA MAHMOUD

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

SAFAA MAHMOUD

INVESTIGATION ON COMPATIBILITY TORSION OF

By

CONCRETE FLOOR SLABS

PAULA MAGDY SEDKY DAWOUD

BSc. 2014, Structural Division,
Structural Engineering Dept. South Valley University

A Thesis

Submitted in Partial Fulfilment for the Requirements of the Degree of MSc. of Science in Civil Engineering (Structural)

Supervised by

Prof. Dr. AMR ALI ABD EL RAHMAN

Prof. of Concrete Structures, Ain Shams University

Assoc. Prof Dr. OSAMA EL NESR

Associate Prof. of Structural Engineering Dept., Ain Shams University

Dr. AYMAN SAYED ABOUBEAH

Assistant Prof. of Structural Engineering Dept., Ain Shams University

Feb., 2020

Cairo, Egypt

Engineer: PAULA MAGDY SEDKY DAWOUD

Date of Birth: 4/5/ 1992

Nationality: Egyptian

E-mail: bolasedky92@gmail.com

Phone: 01289527809

First Academic Degree: B.Sc. (South Valley 2014)

Degree: Master of Science

Department: Structural Engineering

STATEMENT

This dissertation is submitted to Ain Shams University, Cairo, Egypt, for the degree of Master Science in Civil Engineering (Structural).

No part of this thesis has been submitted for a degree or qualification at any other University or Institution.

Date: / /2020

Name: Paula Magdy Sedky

Signature:

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Abstract of the MSc thesis submitted by

Eng. Paula Magdy Sedky Dawoud

<u>Title of thesis:</u> "INVESTIGATION ON COMPATIBILITY TORSION OF CONCRETE FLOOR SLABS"

SUPERVISORS:

Prof. DR. AMR ALI ABD EL RAHMAN
DR. OSAMA EL NESR
DR. AYMAN SAYED MOHAMED ABOUBEAH

ABSTRACT

Many structural elements such as eccentrically loaded bridge girders, curved beam in plan, grids, beam-slab structural system and spandrel beams in buildings are subjected to significant torsional moments. Such members are subjected to twisting about its longitudinal axial, known as torsion, in addition to the shear force and bending moment, hence the external loads act far away from the vertical plane of bending. To design such members, it is essential to recognize whether the torsional moment is required to

maintain equilibrium or compatibility. These two cases are generally referred to as equilibrium torsion or compatibility torsion, respectively. Torsion in determinate structures is always equilibrium torsion, while that in indeterminate structures can be of compatibility torsion which happens in spandrel beams and it will be the matter of this study. Once the spandrel beam cracks in torsion, its torsional stiffness reduces substantially. The reduction causes a significant redistribution of torque to the framing element.

The presented thesis introduces an experimental and analytical study in order to investigate the compatibility torsion of spandrel beams taking into consideration the effect of cracking, torsional reinforcement for main beam (spandrel beam), degree of fixation, and reinforcement ratio. A total of four specimens were tested under concentrated load and the findings were reported, including capacity, serviceability limit states and failure mode. Analysis and prediction of the tested specimens are also presented in the light of recommendations of international codes.

Keywords: Compatibility, Grid slabs, RC, rotation, spandrel, torsion, T-shaped frame, torsional reinforcement.

ACKNOWLEDGEMENT

The writer is deeply indebted to Prof. Dr. Amr Ali
Abdelrahman, Professor of concrete structures, Ain Shams
University, for his kind and constant supervision, planning,
guidance, valuable suggestions, precise advice and constant
encouragement during all phases of this research work.

The writer is deeply thankful to Prof. Dr. Osama Elnesr,
Associate Professor of Concrete Structural Engineering Ain Shams
University, for his usual and accurate supervision, clarification,
vision, valuable suggestions, constant advice and ideal
encouragement during all phases of this research work.

The writer wishes to express his appreciation to Dr. **Ayman Sayed Aboubeah**, Assistant Professor of Structural Engineering
Department, Ain Shams University, for his sincere help,
encouragement and cooperation to the fullest degree during all
phases of this work. I have acquired a lot of experiences and skills
during the period of working with him.

The author is also grateful to all of the **Reinforced Concrete Laboratory Staff**, Faculty of Engineering, Ain Shams University, for their kind help during the experimental phase of this study.

Finally, the author dedicates this thesis to his **Mother**, **Father**, and **Sisters** for their continuous encouragement, and fruitful care.

TABLE OF CONTENTS

TABLE OF CONTENTS

APPROVAL SHEET	i
STATEMENT	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xiii
LIST OF FIGURES.	xiv
CHAPTER (1): INTRODUCTION	
1.1 GENERAL	1
1.2 OBJECTIVES	2
1.3 SCOPE OF WORK	3
1.3.1 Experimental Investigation	3
1.4 THESIS LAYOUT	4
CHAPTER (2): LITERATURE REVIEW	
2.1 GENERAL	7
2.2 EQUILBRIUM TORSION AND COMPATIBILITY TORSION	8
2.2.1 Equilibrium Torsion.	8
2.2.2 Compatibility Torsion	9
2.3 PRINCIPALE STRESSES DUE TO TORSION	11
2.4 THIN WALLED TUBE IN TORSION	11
2.5 Compatibility TORSION IN SPANDREL BEAMS	13
2.5.1 Moment Redistribution	14
2.6 PREVIOUS EXPERIMENTAL INVESTIGATIONS	17
2.6.1 Collins and Lampert 1971	17
2.6.2 Hsu and Hwang 1977	18

2.6.3 Abdul Mansur and Rangan 1987	19
2.6.4 Mo and Hsu 1991	19
2.6.5 Anis and Abdu Alrazaq 1998.	20
2.7 DESIGN FOR COMPATIBILITY TORSION IN CODES	22
2.7.1 Compatibility Torsion In ACI Code	22
2.7.2 Compatibility Torsion In CSA Code	23
2.7.3 Compatibility Torsion In EURO Code	24
2.7.3.1 Evaluation Of Torsional Momnets In EURO Code	24
2.7.4 Compatibility Torsion In ECP Code	25
2.7.4.1 Redistribution Of Torsional Moment For Statically Indetermina	ıte
Structures	25
2.7.4.2 Reinforced Concrete Section Stiffness In Torsion	26
CHAPTER (3): EXPERIMENTAL WORK	
3.1 GENERAL	38
3.2 DESCRIPTION OF THE TESTED SPECIMENS	38
3.2.1 Specimens	40
3.3 MATERIAL PROPERTIES	42
3.3.1 Concrete	42
3.3.1.1 Control Specimens	42
3.3.2 Reinforcing Steel	43
3.4 CASTING, COMPACTING AND CURING OF TESTED SPECIMENS	43
3.5 EQUIPMENT AND INSTUMENTATION	44
3.6 TEST SETUP AND LOADING SCHEME	45
3.7 TEST PROCEDURE	45
CHAPTER (4): EXPERIMENTAL RESULTS	
4.1 GENERAL	60
4.2 BEHAVIOR OF THE TESTED T-SHAPED SPECIMENS	
4.2.1 T-SHAPED SPECIMEN (SP1)	

4.2.2 T-SHAPED SPECIMEN (SP2)62	2
4.2.3 T-SHAPED SPECIMEN (SP3)63	3
4.2.4 T-SHAPED SPECIMEN (SP4)64	4
4.3 CRACK PATTERNS, CRACKING LOADS AND FAILURE LOADS6	5
4.3.1 The First and Second T-shaped Specimens70	С
4.3.2 The Third and Fourth T-shaped Specimens	1
4.4 DEFORMATIONAL BEHAVIOR OF THE SPECIMENS72	2
4.5 STRAINS OF STEEL REINFORCEMENT	4
4.5.1 The First and Second T-shaped Specimens	5
4.5.2 The Third and Fourth T-shaped Specimens	5
4.6 REACTION AT ROLLER SUPPORT70	6
4.6.1 The First and Second T-shaped Specimens	5
4.6.2 The Third and Fourth T-shaped Specimens	7
CHAPTER (5): ANALYTICAL WORK	
5.1 GENERAL	1
5.2 ANALYTICAL RESULTS	13
5.2.1 Group (G1)- (SP1&SP2) Specimens	3
5.2.2 Group (G2)- (SP3&SP4) Specimens	3
5.3 COMPARISON BETWEEN EXPERIMENTAL AND ANALYTICAL WORK11	.3
5.4 BEHAVIOR OF THE TESTED T- SHAPED SPECIMENS11	4
5.5 BENDING AND TORSIONAL MOMENTS	15
5.6 REACTION AT ROLLER SUPPORT	1′
CHAPTER (6): CONCLUSIONS	
6.1 GENERAL	18
6.2 CONCLUSIONS	20
6.3 SUGGESTED AREAS FOR FUTURE RESEARCHES12	23
REFERENCES	24

LIST OF TABLES

LIST OF TABLES

Table

(2-1) Values of K ₁ for a rectangular section	25
(2-2) Values of factor β to calculate torsional stiffness of sections	26
(3-1) Description of the T-shaped test specimens	40
(3-2) Mix properties for the used concrete	42
(3-3) Result of The Control Specimen	43
(4-1) Experimental Results of Cracking Load, Failure Load	86
(5-1) Analytical and Experimental Result of Bending and Torsional Moments For First	
T-shaped Specimen1	13
(5-2) Analytical and Experimental Result of Bending and Torsional Moments For	
Second T-shaped Specimen	13
(5-3) Analytical and Experimental Result of Bending and Torsional Moments For	
Third T-shaped Specimen1	14
(5-4) Analytical and Experimental Result of Bending and Torsional Moments For	
Fourth T-shaped Specimen1	14

LIST OF FIGURS

Figure

(2-1) Cantilever Beam Subjected To Equilibrium Torsion	27
(2-2) Cantilever Canopy	27
(2-3) Box-Girder Bridge	28
(2-4) L-Shaped Girder	28
(2-5) Compatibility Torsion	29
(2-6) Example Of Compatibility Torsion	29
(2-7) Shear Stresses Due To Torsion	30
(2-8) Principal Stresses	30
(2-9) Crack Pattern	30
(2-10) Thin-Walled Tube Subjected To Torsion	31
(2-11) Space Frame Showing The Test Specimen	31
(2-12) Test Specimen Resting On Three Spherical Hinges	32
(2-13) Test Specimen At Separating Floor Beam From Spandrel Beam	32
(2-14-a) Test Specimen Shows Moment Diagrams From Equilibrium	33
(2-14-b) Test Specimen Shows Shear Diagrams From Equilibrium	33
(2-14-c) Test Specimen Shows Torque Diagrams From Equilibrium	33
(2-15) Hsu and Burton Test Specimen.	34
(2-16) Testing Of T-Shaped Test Specimen With Four Concentrated Load by F	Isu and
Burton 1974	34
(2-17) Load-Torque Curves For Specimens B1, B2 and B5 by Hsu and Burton	197435
(2-18) Torque- Twist Curves Fpr Specimens B1, B2 and B5 by Hsu and	
Burton 1974	35
(2-19) Test Set-up by Ozerdinc et al 1972	36