

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DESIGN AND PRIDUCTION ENGINEERING DEPARTMENT

Processing of Composite Materials by Severe Plastic Deformation (SPD)-Structure and Mechanical Properties

A Thesis

A Thesis submitted in partial fulfillment for the requirements of the degree Doctor of Philosophy in Mechanical Engineering (Design and Production Engineering)

By

Gehan Anwar Abd El-Raouf Taha

M.Sc. in Mechanical Engineering, 2013 B.Sc. in Design and Production Engineering, 2002

Supervised by

Prof. Dr. Nahed El-Mahallawy

Professor, Design & Production Engineering Department Faculty of Engineering, Ain Shams University

Prof. Dr. Mohamed Kamal Shoukry

Professor, Design & Production Engineering Department Faculty of Engineering and Materials Science, German University in Cairo

(2020)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DESIGN AND PRIDUCTION ENGINEERING DEPARTMENT

Processing of Composite Materials by Severe Plastic Deformation (SPD)-Structure and Mechanical Properties

A Thesis submitted in partial fulfillment for the requirements of the degree Doctor of Philosophy in Mechanical Engineering (Design and Production Engineering)

By

Gehan Anwar Abd El-Raouf Taha

M.Sc. In Mechanical Engineering, (2013) B.Sc. In Design and Production Engineering, (2002)

Examiners' Committee

1-	Prof. Dr. Mohamed Ahmed Bayomi	•••••
	Professor, Mechanical Engineering Department	
	Faculty of Engineering, Al- Azhar University	
2-	Prof. Dr. Waleed Mohamed Abdel Aziz Khalifa	
	Professor, Mining, Petroleum and Metallurgy	
	Faculty of Engineering, Cairo University	
3-	Prof. Dr. Nahed El-Mahallawy	
	Professor, Mechanical Design & Production Engineering D	epartment
	Faculty of Engineering, Ain Shams University	

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DESIGN AND PRIDUCTION ENGINEERING DEPARTMENT

Processing of Composite Materials by Severe Plastic Deformation (SPD)-Structure and Mechanical Properties

A Thesis submitted in partial fulfillment for the requirements of the degree Doctor of Philosophy in Mechanical Engineering (Design and Production Engineering)

By

Gehan Anwar Abd El-Raouf Taha

M.Sc. In Mechanical Engineering, (2013) B.Sc. In Design and Production Engineering, (2002)

Supervising committee

Prof. Dr. Nahed El-Mahallawy Professor, Mechanical Design & Production Engineering Department Faculty of Engineering, Ain Shams University Prof. Dr. Mohamed Kamal Shoukry Professor, Design & Production Engineering Department Faculty of Engineering and Materials Science, German University in Cairo.

Researcher data

Name: Gehan Anwar Abdel Raouf Taha

Date of birth: June 25, 1980

Place of birth: Cairo, Egypt

Last academic degree: Master of science Mechanical Engineering

Field of specialization: Mechanical Engineering

University issued the degree: Ain shams university

Date of issued degree: December 2013

Current job: Lecturer assistant, German University In Cairo

Email:

Statement

This thesis is submitted as partial fulfillment of Doctor of Philosophy in

Mechanical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no Part of it has

been submitted for a degree or qualification at any other scientific entity.

Gehan Anwar Abd El Raouf taha

Signature

Date: 14 July 2020

ACKNOWLEDGEMENT

In the name of Allah, most gracious, most merciful

I would like to express my deep and sincere gratitude to my research supervisor, Prof. Nahed El-Mahallway for giving me the opportunity to do research and providing invaluable guidance throughout this research. Her dynamism, vision, sincerity and motivation have deeply inspired me. She has taught me the methodology to carry out the research and to present the research works as clearly as possible. It was a great privilege and honor to work and study under her guidance. I am extremely grateful for what she has offered me. I would also like to thank her for her friendship, empathy, and great sense of humor.

I am especially thankful and grateful to my thesis chief supervisor Prof. **Mohamed Kamal Shoukry** for his constant help, guidance and the countless hours of attention he devoted throughout the work in this thesis.

I express my special thanks, Prof. *Ahmed Abd El-Aziz*, Vice Dean for EMS Student Affairs, Materials Engineering Department, German University in Cairo, for his genuine support throughout this research (corrosion work).

I am extremely grateful to my parents for their love, prayers, caring and sacrifices for educating and preparing me for my future. I am very much thankful to my daughters for their love, understanding, prayers and continuing support to complete this research work. Also I express my thanks to my sisters, brothers for their support and valuable prayers. My Special thanks go to *Mohamed Ibrahim* (workshop), German University in Cairo, for the keen interest shown to complete the practical work successfully.

Finally, my thanks go to all the people who have supported me to complete the research work directly or indirectly.

(2020)

ABSTRACT

Severe plastic deformation (SPD) is one of the most effective methods of producing very fine crystalline structure in different metallic systems (e.g. Aluminium, Iron, and Magnesium). The main objectives of SPD are the creation of micro and sub-micro sized subgrains in the original coarse grains of the material. The microstructure changes caused by SPD are result in improved mechanical and physical properties of metals.

The grain size of the materials plays a very important role on the physical and mechanical properties such as strength, hardness, wear rate and corrosion resistance. According to Hall–Petch relationships, the yield strength and the hardness increase with decreasing square root of grain size.

In the present work cyclic extrusion compression (CEC) process is carried out for the Al 6061, Al 6061/SiC 5 wt%, and Al 6061/SiC 10 wt% composites with different number of cycles. Using extrude diameter of 12 mm and chamber diameter of 14 mm and imposed strain of 0.62 per cycle. The microstructure evaluation of the processed materials was investigated before and after the CEC process using optical, scanning electron microscope (SEM), and energy dispersive analysis of X-rays (EDX). The results indicated the grain refinement of the Al 6061, and its composites due to the increase of the number of cycles, where, the grain sizes of the processed Al 6061, Al 6061/SiC 5 wt%, and Al 6061/SiC 10 wt% samples reduced by 90%, 91.5%, and 89% after 6, 5, and 6 cycles respectively, compared to the annealed condition. An expected decrease in the SiC particles size, and more homogenous distribution were obtained with increasing of the CEC number of cycles. The particle size decreased from 35 μm to 22.4 μm and to 21.9 μm by 36% and 38% reduction percent for 5wt% and 10wt% SiC respectively. The effect of further cycles on particle breakage decreases gradually; to reach 9µm and 7µm for 5wt% and 10wt% SiC respectively. After post-CEC process, the SiC_p was reduced to about 1 μm for Al 6061/SiC 5wt% after 5 cycles and to about 0.95 μm for Al 6061/SiC 10wt% after 4 cycles.

The ultimate tensile strength and the yield strength were found to be increased with increasing the CEC cycles, while the elongation was decreased in the first and second cycles and it start to increase again after the forth cycle up to 6 cycle in case of Al 6061 due to the recovery process. Notable increase in the hardness with increasing the number of CEC cycles was observed for Al 6061, Al 6061/SiC 5 wt%, and Al 6061/SiC 10 wt%, by 48%, 37%, and 19% respectively, compared to the annealed samples, the hardness distribution was uniform in the sample cross section.

The wear rate of Al 6061, Al 6061/SiC 5 wt%, and Al 6061/SiC 10 wt% was improved by increasing the number of CEC cycles due to the increase in the hardness via grain refinement resulting from the imposed strain during the CEC cycles, and the homogenous distribution of the fine SiC particles in the composite material.

The corrosion resistance, the pitting initiation and pitting area fraction of Al 6061, Al 6061/SiC 5 wt%, and Al 6061/SiC 10 wt% were decreased by increasing the number of CEC cycles.

List Of Contents.	PAGE
Acknowledgement.	I
Abstract.	II
Summery	IV
List Of Contents.	VI
List Of Figures.	X
List Of Tables.	XIX
List Of Abbreviations.	XX
Chapter (1): Introduction	
1.1 General	1
1.2 Thesis objectives	1
Chapter (2): Literature Review	
2.1 Introduction.	3
2.2 Severe plastic deformation (SPD) techniques.	4
2.2.1 Equal Channel Angular Pressing.	6
2.2.1.1 ECAP- (Equal Channel Angular Processing).	6
2.2.1.2 Applications of ECAP.	7
2.2.2 High Pressure Torsion (HPT) technique.	8
2.2.3 Twist Extrusion (TE).	9
2.2.4 Accumulative-roll-bonding (ARB).	10
2.2.4.1 The factors Affecting Interfacial Bonding.	11
2.2.4.2 Disadvantages of the ARB processes.	12
2.2.4.2 Advantages of the ARB processes.	12
2.2.5 Constrained groove pressing (CGP).	12
2.2.6 Accumulative Back Extrusion (ABR).	13
2.2.7 Cyclic Extrusion and Compression (CEC).	14
2.3 Principles of CEC process	

2.3.1 Microstructure development of ultrafine grained processed by CEC.	15
2.3.2 Mechanical properties behavior the materials processed by CEC.	24
2.3.2.1 Tensile properties of processed metals and alloys by CEC.	24
2.3.2.2 Hardness of processed metals and alloys by CEC.	28
1.3.3 Effect of severe plastic deformation on the metal matrix composites (MMCs).	29
2.4 Wear properties of CEC materials.	33
2.4.1 Introduction.	33
1.4.2 Effect of Severe Plastic Deformation process on the wear properties.	31
2.5 Corrosion behavior of CEC materials.	36
2.5.1 Introduction.	36
2.5.2 Effect of Severe Plastic Deformation process on the Corrosion behavior	39
2.6 Scope and Objectives of the present work.	27
Chapter (3): Experimental Work	
3.1 Introduction	41
3.2 Experimental materials	41
3.2.1 Preparation of the Al alloy 6061 billets by casting	41
3.2.2 Fabrication of Al 6061/SiC by stir casting	42
3.2.3 Materials analysis	46
3.2.4 Heat treatment process	46
3.3 Construction of the cyclic extrusion compression device	47
3.4 Mechanical Properties Measurements	51
3.5 Wear Test	52
3.6 Electrochemical corrosion test	53
3.7 Microscopic examination	55
3.7.1 Optical microscopic examination	55
3.7.2 Scanning electron microscopic (SEM) examination	56

α_1	/ 4 \	D 1.	A 1	D
Chapter	(4)	· Results	And	Discussion
Chapter	· · /	· Itobaits	1 1110	DISCUSSION

4.1 Introduction	57
4.2 Microstructure evaluation	57
4.2.1 Microstructure evaluation of Al alloy 6061 before CEC.	57
4.2.2 Microstructure evaluation of Al alloy 6061 after CEC.	59
4.2.3 SEM & EDX analysis for annealed AA6061after CEC 6 cycles.	62
4.3 Microstructure evaluation for AA6061/SiC 5% w.t	64
4.4 Microstructure evaluation for AA6061/SiC 10%wt.	65
4.4.1 SiC refining in Al/SiC composites for AA6061/ SiC 10%wt after CEC cycle.	69
4.4.2 Particle distribution and refining of AA6061/ SiC 10% after CEC 6 cycles.	70
4.5 Mechanical properties.	72
4.5.1 Tensile properties.	72
4.5.1.1 Effect of the number of CEC cycles on tensile properties of AA6061.	72
4.5.2 Fracture surface morphology	74
4.5.2.1 Fracture surface morphology of annealed Al alloy 6061 and after CEC	74
4.5.3 Hardness results	76
4.5.3.1 Effect of the number of CEC cycles on hardness properties of AA6061	76
4.5.3.2 Effect of the number of CEC cycles on hardness properties of AA6061/SiC 5% and 10 %wt	78
4.6 Secondary CEC stage (post annealing)	79
4.6.1 Microstructure evaluation for post annealedAA6061/SiC 5%wt. and 10% wt	79
4.6.2 Mechanical properties	85
4.6.3 Fracture surface morphology of post annealed AA6061/SiC 5%wt. and 10% wt. before and after CEC	87
4.7 Wear test results.	90
4.7.1 Wear properties of the AA6061 before and after the CEC process.	90

4.7.1.1 Wear properties of the AA6061/SiC 5% wt after the CEC process.	90
4.7.1.2 Wear properties of the AA6061/SiC 10%wt after the CEC process.	94
4.7.2 Worn surface morphology.	100
4.7.2.1 Worn surface morphology of the AA6061 before and after the CEC process	100
4.7.2.2 Worn surface morphology of the AA6061/SiC 5% wt and AA6061/SiC 10% wt before and after the CEC process.	103
4.8 Electrochemical Corrosion Test Results.	108
4.8.1 Corrosion behavior of AA6061 before and after CEC process.	108
4.8.2 Corrosion behavior of AA6061/SiC 5%wt. and AA6061/SiC 10%wt. before and after CEC process.	117
Chapter (5): Conclusions And Recommendation For Future Work	
5.1 Conclusions.	124
5.2 Recommendation For Future Work.	126
References.	127
List Of Published Papers Based On This Thesis.	138
Arabic Summary.	139