

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

"EFFECT OF WINTER CHERRY EXTRACT (WITHAFERIN-A) ON HEAD AND NECK SQUAMOUS CELL CARCINOMA CELL LINE"

IN VITRO STUDY

Thesis Submitted to the Faculty of Dentistry
Ain Shams University in Partial Fulfillment for
Master's Degree in Oral Pathology

By

ENJY ABDELRAZEK ABDELKALIK BASSIM (B.D.S)

Faculty of Dentistry Ain Shams University 2012

Faculty of Dentistry
Ain Shams University
2020

Supervisors

Dr. Mohammed Hossam Eldin Elmallahi

Professor of Oral Pathology
Faculty of Dentistry
Ain Shams University
President of Nahda University

Dr. Nermeen Sami Afifi

Lecturer of Oral Pathology
Faculty of Dentistry
Ain Shams University

Acknowledgment

Thanks to Almighty ALLAH for giving me strength and ability to understand and complete this work......

I also admire the help and guidance of **Dr. Mohammed Hossam Eldin El Mallhi,** Professor of Oral Pathology, Faculty of Dentistry, Ain Shams University, President of Nahda University, and **Dr. Nermeen Sami Afifi,** Lecturer of Oral Pathology, Faculty of Dentistry, Ain Shams University, my supervisors for their constant effort, guidance, cooperation, valuable assistance and patience through my work.

All my thanks to all Oral Pathology Department, Faculty of Dentistry, Ain Shams University staff members who assist me greatly in this work. Thanks;

To My Parents,

Thank you for always being supportive in my whole life.

My Brother and Sisters,

You are my sincere companions throughout my journey.

My Grandmother,

You are deeply missed, all our successes were hand-seeded by you, you are surely now in the higher paradise, may ALLAH combine me with you.

My Godfather,

Dr. AHMED KHALED TAWFIK, all inspirations in my way are owe to you, GOD bless your soul.

All My Friends,

I really appreciate your support you all offered to me.

May ALLAH bless you all.

Table of Contents

List of Abbreviations
List of Figures
List of Tables
Introduction
Review of Literature
I.Oral Squamous Cell Carcinoma.
II.Chemotherapeutics and their Adverse Effect and Limitations.
III.Phytochemicals in Medicine
IV.Withaferin-A
IV.1 Chemical Structure of Withaferin-A
IV.2 Uses and Biological Activity of Withaferin-A
IV.3 Anticancer Effect of Withaferin-A
V. Apoptosis
V.1 Phases of Apoptosis
V.2 Morphological Changes in Apoptosis
V.3 Biochemical Changes in Apoptosis
V.4 Pathways of Apoptosis.
V.5 Apoptosis and Cancer
Aims of the Study
Material and Methods
I.Material
I.A. Cell Line
I.B. Reagents.
II. Methods

II.A Cell Culture	31
II.B MTT Assay and Determination of IC50 of Withaferin-A II.C Doses Determination and Treatment of Cultured Cells	31 37
II.D Investigation of the Effect of the Studied Doses of Withaferin-A on SCC25 Cell Line	38
II.D.1 Cytological Examination	38
II.D.2 Nuclear Morphometric Analysis	4
II.D.3 Mitochondrial Membrane Potential Measurement.	4
II.E Statistical Analysis	4.
Results	4
I.MTT Assay Results	4
II.Cytological Examination Results	4
III.Nuclear Morphometric Analysis Results	5
III.A Nuclear Circularity	5
III.B Nuclear Surface Area	5
III.C Nuclear Area Factor.	5
IV. Mitochondrial Membrane Potential Results	5
Discussion	7.
Conclusions	8
Recommendations	8
Summary	8
References	9
Arabic Summary	12

List of Abbreviations

AIDS	Acquired Immunodeficiency Syndrome
AIF	Apoptosis Inducing Factor
ANOVA	Analysis of Variances
Apaf-1	Apoptosis protease activating factor- 1
ATCC	American Type Culture Collection
Bax	Bcl-2 associated X protein
Bcl-2	B-cell Lymphoma 2
CD31	Cluster of Differentiation 31
Cdc25	Cell division cycle 25
Cdk1	Cyclin-dependent kinases 1
CTLs	Cytolytic T cells
DIABLO	Direct IAP binding protein with low PI
DISC	Death-Inducing Signalling Complex
DMBA	7,12-Dimethylbenz[a]anthracene
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Di-Methyl Sulfoxide
DNA	Deoxyribonucleic Acid
DPBS	Dulbecco's Phosphate-Buffered Saline
DR5	Death Receptor 5
EBV	Ebstein- Barr Virus
EDTA	Ethylene Di-amine Tetra-Acetic Acid
EGF-R	Epidermal Growth Factor Receptor
ER	Endoplasmic Reticulum
F	Female
FADD	Fas-Associated Death Domain
FasL	Fas Ligand
FBS	Fetal Bovine Serum
H&E	Hematoxylin and Eosin Staining
HNSCC	Head and Neck Squamous Cell Carcinoma
HPV	Human Paoilloma Virus
Hsp 90	Heat shock protein 90
HtrA2	High temperature requirement protein A
i.p.	Intraperitoneal
IAPs	Inhibitor of Apoptosis Proteins

IARC	International Agency for Research on Cancer
IC50	The Half maximal Inhibitory Concentration.
KCl	Potassium Chloride
KH ₂ PO ₄	Potassium Phosphate, monobasic
M	Male
Mcl-1	Myeloid cell leukemia- 1
MRI	Magnetic Resonance Imaging
MTT	4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide
Na ₂ HPO ₄	Sodium Phosphate, dibasic
NaCl	Sodium Chloride
NAF	Nuclear Area Factor
NCCD	Nomenclature Committee on Cell Death
NCI	National Cancer Institute
NF-κB	Nuclear Factor -kappaB
NK	Natural Killer
OD	Optical Density
OSCC	Oral Squamous Cell Carcinoma
p53	Tumor protein 53
par-4	Prostate- apoptosis response-4
PBS	Phosphate Buffered Saline
PS	Phosphatidylserine
ROS	Reactive Oxygen Species
SCC	Squamous Cell Carcinoma
SD	Standard Deviation
SDS	Sodium Dodecyl Sulfate
Smac	Second mitochondria-derived activator of caspase
SPSS	Statistical Package for the Social Sciences
STAT3	Signal Transducer And Activator of Transcription 3
TNF	Tumor Necrosis Factor
TNFR1	Tumor Necrosis Factor Receptor type 1
TNM	Tumor, Lymph Node and Metastasis
TRADD	TNF Receptor-Associated Death Domain
TRAF2	TNF Receptor Associated Factor 2
VACSERA	Vaccines & Sera
W.Somnifera	Withania Somnifera
W-A	Withaferin-A

WHO	World Health Organization
xg	Times gravity
Δψm	Mitochondrial Membrane Potential
20 MC	20-Methyl-Cholathrene

List of Figures

Figure 1:	Chemical structure of W-A	(9)
Figure 2:	Intrinsic and extrinsic apoptotic pathways	(24)
Figure 3:	Flask containing SCC 25 cells	(32)
Figure 4:	Inverted light microscope	(33)
Figure 5:	Centrifuge	(33)
Figure 6:	96 well plates	(34)
Figure 7:	Elisa Reader	(34)
Figure 8:	Graphs showing the relation between log doses and the % of viability at 24hrs and 48hrs	(36)
Figure 9:	IC50 values of W-A on SCC 25 cell line after 24 and 48 hrs	(37)
Figure 10:	A plate showing the various steps of nuclear morphometric analysis of SCC- 25 treated with W-A using Image J, 1.41a, (NIH, USA) image analysis software	(41)
Figure 11:	A Photomicrograph of control SCC25 cells (CT1) showing regular nuclear and cellular outlines. A few cells showing chromatin margination (H & E original magnification x 100 oil)	(46)

Figure 12:	A Photomicrograph of treated SCC25 cells (W1T1) showing early apoptotic cells predominating the field with nuclear shrinkage and chromatin margination (H & E original magnification x 100 oil)	(46)
Figure 13:	A Photomicrograph of treated SCC25 cells (W2T1) showing late apoptotic cells predominating the field with membrane bleebing, nuclear fragmentation and apoptotic bodies (H & E original magnification x 100 oil).	(47)
Figure 14:	A Photomicrograph of treated SCC25 (W3T1) showing late apoptotic cells predominating the field with membrane bleebing and apoptotic bodies. A few swollen necrotic cells could be observed (H & E original magnification x 100 oil)	(47)
Figure 15:	A Photomicrograph of control SCC25 cells (CT2) showing predominance of cells with regular nuclear and cellular outlines with few cells showing chromatin margination (H & E original magnification x 100 oil).	(48)
Figure 16:	A Photomicrograph of treated SCC25 cells (W1T2) showing predominance of late apoptotic cells with membrane bleebing and nuclear fragmentation. Only few cells are showing morphological criteria of early apoptosis with nuclear shrinkage and chromatin margination (H & E original magnification x 100 oil).	(48)
Figure 17:	A Photomicrograph of treated SCC25 cells (W2T2) showing late apoptotic features in almost all cells, with nuclear fragmentation membrane bleebing and apoptotic bodies. Some swollen necrotic cells and cell debris are also observed (H & E original magnification x 100 oil)	(49)

Figure 18:	A Photomicrograph of treated SCC25 (W3T2) showing late apoptotic features in almost all cells, with nuclear fragmentation membrane bleebing and apoptotic bodies. Some swollen necrotic cells and cell debris are also observed (H & E original magnification x 100 oil)	(49)
Figure 19:	A bar chart representing the mean values of NAF of SCC25 cells treated with different doses of W-A for 24hrs.	(53)
Figure 20:	Kruskal-Wallis test between different groups of SCC25 cells treated with different doses of W-A for 24hrs.	(54)
Figure 21:	A bar chart representing the mean values of NAF of SCC 25 cells treated with different doses of W-A for 48hrs.	(56)
Figure 22:	Kruskal-Wallis test between different groups of SCC25 cells treated with different doses of W-A for 48hrs.	(56)
Figure 23:	Representative curves of green and red fluorescence percentages of SCC 25 cells treated with different doses of W-A for 24hr	(58)
Figure 24:	Representative curves of green and red fluorescence percentages of SCC 25 cells treated with different doses of W-A for 48hrs.	(61)
Figure 25:	A bar chart representing the mean values of green fluorescence percentage of SCC 25 cells treated with different doses of W-A for 24hrs and 48hrs	(63)
Figure 26:	A bar chart representing the mean values of red fluorescence percentage of SCC 25 cells treated with different doses of W-A for 24hrs and 48hrs	(63)