

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Radiation induced different hydrogel for water treatment applications by heavy metal uptake

A Thesis Submitted for the Degree of Master of Science as a Partial Fulfillment for Requirements of the Master of Science

Presented By Mai Mamdouh Saad Hassan

(B. Sc. 2012)

Supervised By

Prof. Dr. Omyma A. M. Ali

Professor of Inorganic Chemistry, Faculty of Women, Ain Shams University, Cairo, Egypt.

Prof. Dr. Nabila A. Maziad

Professor of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy of Authority

Prof. Dr. Fatma H.Abd El-Salam

Professor of Organic Chemistry, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.

Dr. Faten M. Zakaria

Assistant Professor of Physical Chemistry, Faculty of Women, Ain Shams University, Cairo–Egypt

Ain Shams University
Faculty of Women for Arts
Science & Education

Radiation induced different hydrogel for water treatment applications by heavy metal uptake

A Thesis Submitted for the Degree of Master of Science as a Partial Fulfillment for Requirements of the Master of Science

Presented By Mai Mamdouh Saad Hassan

(B. Sc. 2012)

Supervised By

Prof. Dr. Omyma A. M. Ali

Professor of Inorganic Chemistry, Faculty of Women, Ain Shams University, Cairo, Egypt.

Prof. Dr. Nabila A. Maziad

Professor of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy of Authority

Prof. Dr. Fatma H.Abd El-Salam

Professor of Organic Chemistry, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.

Dr. Faten M. Zakaria

Assistant Professor of Physical Chemistry Faculty of Women Ain Shams University, Cairo–Egypt

Science & Education

Radiation induced different hydrogel for water treatment applications by heavy metal uptake

THESIS ADVISORS	APPROVED
Prof. Dr. Omyma A. M. Ali Prof. of Inorganic Chemistry, Chemistry department Faculty of Women, Ain Shams University, Cairo – Egypt.	
Prof. Dr. Fatma H.Abd El-Salam Prof. of Organic Chemistry, Faculty of Science, Al-Azhar Cairo, Egypt Prof. Dr. Nabila A. Maziad	University (Girls),
Prof. of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy of Authority	
Dr. Faten Mohamed Zakaria Ass. Prof. of Physical Chemistry, Chemistry department Faculty of Women, Ain Shams University, Cairo – Egypt.	
Head of Chemis	• •
Approval of Chemistry Department Council	/ / 2020
Approval of Faculty Council	/ / 2020
Approval of university Council	/ / 2020

Qualifications

Student Name : Mai Mamdouh Saad Hassan

Scientific Degree : B. Sc.

Department : Chemistry & Physics

Name of Faculty : Faculty of Women

University : Ain Shams University

B. Sc. Graduation Date: 2011/2012

NOTE

Beside the work done in this thesis, the candidate student has attended post-graduate courses for one year in inorganic and analytical chemistry including the following topics:

-	Instrumental Analysis	(CHEM 601)
-	Advanced Coordination Chemistry	(CHEM 631)
-	Radiation Chemistry	(CHEM 632)
-	Writing Scientific Research	(SCR 610)
-	Spectroscopy	(CHEM 630)
-	Ethics of Scientific Research	(SCR 620)
-	Structural Inorganic Chemistry	(CHEM 636)
_	Advanced Reaction Mechanism	(CHEM 634)

She has successfully passed written examinations in the above mentioned topics.

<u>Acknowledgement</u>

Praise and thanks be to ALLAH for assisting and giving me the opportunity and efficient power to accomplish this work.

I would like to express my thanks to **Prof. Dr. Fatma H. Abd El–Salam** Professor of organic Chemistry, Faculty of Science, Al-Azhar University (Girl's), Cairo – Egypt, for her supervision, useful directions and criticism through the path of research, and I am also thankful for her cooperation in interpreting the results.

I would like to submit my sincere thanks and deepest appreciation to **Prof. Dr. Nabila A. Maziad** Professor of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy of Authority for her supervision, useful directions and criticism through the path of research

I would like to submit my sincere thanks and deepest appreciation to **Prof. Dr. Omyma A. Moustafa**, Professor of Inorganic Chemistry, Faculty of Women, Ain Shams University, for her encouragement, and fruitful discussion during all the steps of the study.

My deep gratitude and appreciation to **Dr. Faten M. Zakaria**, Assistant Professor of Physical Chemistry, Faculty of Women, Ain Shams University, for her encouragement.

I wish to express my deep thanks for my mother and my sister (Menna mamdouh).

Mai Mamdouh

CONTENTS

LIST OF FIGURES	F
LIST OF TABLES	K
LIST OF ABBREVIATIONS	L
ABSTRACT	M
SUMMARY	О
CHAPTER (1)	
Introduction	
1.1. Water pollution	1
1.2. Polymers and polymerization by gamma irradiation	2
1.3. Surfactant	5
1.4. Polymer –surfactant matrix	8
1.5. Literature review	9
1.5.1. Amphoteric surfactants	9
1.5.2. Hydrogel	24
AIM OF THE WORK	40
CHAPTER (2)	
EXPERIMENTAL WORK	
2.1. Materials	41
2.2. Synthesis of surfactants	41
2.2.1. Synthesis of 1-chloro-3-(hexadecyloxy) propane-2OL	
(1)	41
2.2.2. Synthesis of 2-((3-carboxy acryl oxy) oxy) 3-	
(hexadecyloxy)-1-propyl chloride (2)	42
2.2.3. Synthesis of 2-((3-carboxy acryloxy) oxy)-3	
(hexadecyloxy)-N,N,N-trimethyl propane-1- ammonium	
chloride (3)	42
2.2.4. Synthesis of sodium salt of N-(2-(carboxy	
latomethoxy)-3-(hexadecyloxypropyl)	
dimethylglycinate (4)	43

List of Contents

2.3. Synthesis of polymers and polymer-surfactants	45
2.3.1. Synthesis of acrylic acid /acrylamide (AAc/AAm)	
copolymer hydrogel	45
2.3.2. Synthesis of acrylic acid /poly ethylene glycol	
(AAc/PEG) copolymer hydrogel	45
2.3.3 Synthesis of (AAc/AAm/surfactant (3))	46
2.3.4. Synthesis of (AAc/AAm/surfactant (4)) copolymer	
hydrogel	46
2.3.5. Synthesis of poly (AAc/PEG/surfactant (3))	46
2.3.6. Synthesis of poly (AAc/PEG/surfactant (4))	46
2.4. Elemental analysis	46
2.5. Spectroscopy analysis	46
2.5.1. FT-IR spectroscopy	46
2.5.2. ¹ H NMR spectroscopy	47
2.5.3. Mass spectroscopy	47
2.6. Surface tension measurement	47
2.7. Gamma irradiation	47
2.8. Gel determination of hydrogels	47
2.9. Gel fraction measurement	48
2.10. Swelling measurements	48
2.11. Kinetic swelling	48
2.12. Energy dispersive x-ray analysis	49
2.13. Metal uptake studies	49
2.13.1. Effect of time	50
2.13.2. Effect of nickel ion concentration	50
2.13.3. Effect of temperature	50

CHAPTER (3)	
RESULTS & DISCUSSION	
3.1. Characterization of the amphoteric surfactants	51
3.1.1. Elemental analysis	51
3.1.2. FT-IR spectroscopy	53
3.1.3. ¹ H NMR spectroscopy	57
3.1.4. Mass spectroscopy	59
3.2. The critical micelle concentration (cmc) measurements	59
3.3. Maximum surface excess (Γ_{max}) and minimum	
surface area (A _{min})	63
3.4. Efficiency (pc_{20}), cmc/ c_{20} ratio and surface tension	
at cmc (π_{cmc})	64
3.5. Interfacial activity (I _{act})	65
3.6. Thermodynamic parameters, free energy of	
micellization and adsorption (ΔG_{mic} , ΔG_{ads})	66
3.7. Characterization of hydrogels and polymer-surfactant	68
3.8. Gel fraction measurements of copolymer hydrogels	73
3.9. Swelling studies	76
3.9.1. Effect of time on swelling percentage of poly	
(AAc/PEG), poly (AAc/AAm)	76
3.9.2. Effect of time on swelling percentage of poly	
(AAc/AAm/surfactant (3))	79
3.9.3. Effect of time on swelling percentage of poly	
(AAc/AAm/surfactant (4))	82
3.9.4. Effect of time on swelling percentage of poly	
(AAc/PEG/surfactant (3))	85
3.9.5. Effect of time on swelling percentage of poly	
(AAc/PEG/surfactant (4))	88
3.10. Metal uptake application	122

List of Contents

3.10.1. Effect of contact time on removal percentage	
of metal by poly (AAc/AAm)	122
3.10.2. Effect of contact time on removal percentage	
of metal by poly (AAc/AAm/surfactant (3))	123
3.10.3. Effect of contact time on removal percentage	
of metal by poly (AAc/AAm/surfactant (4))	124
3.10.4. Effect of contact time on removal percentage	
of metal by poly (AAc/PEG)	125
3.10.5 Effect of contact time on removal percentage	
of metal by poly (AAc/PEG/surfactant (3))	126
3.10.6. Effect of contact time on removal percentage	
of metal by poly (AAc/PEG/surfactant (4))	127
3.10.7. Effect of initial concentration of metal ion	
solution on removal percentage of metal by poly	
(AAc/AAm)	128
3.10.8. Effect of initial concentration of metal ion	
solution on removal percentage of metal by poly	
(AAc/AAm/surfactant (3))	129
3.10.9. Effect of initial concentration of metal ion	
solution on removal percentage of metal by poly	
(AAc/AAm/surfactant (4))	130
3.10.10. Effect of initial concentration of metal ion	
solution on removal percentage of metal by	
poly (AAc/PEG)	131
3.10.11. Effect of initial concentration of metal ion	
solution on removal percentage of metal by	
poly (AAc/PEG/surfactant (3))	132
3.10.12. Effect of initial concentration of metal ion	
solution on removal percentage of metal by	
poly (AAc/PEG/surfactant (4))	133

List of Contents

3.10.13. Effect of temperature of metal ion solution	
on removal percentage metal by poly	
(AAc/AAm)	134
3.10.14. Effect of temperature of metal ion solution	
on removal percentage metal by poly	
(AAc/AAm/surfactant (3))	135
3.10.15. Effect of temperature of metal ion solution	
on removal percentage metal by poly	
(AAc/AAm/surfactant (4))	136
3.10.16. Effect of temperature of metal ion solution	
on removal percentage metal by poly (AAc/PEG)	137
3.10.17. Effect of temperature of metal ion solution	
on removal percentage metal by poly	
(AAc/PEG/surfactant (3))	138
3.10.18. Effect of temperature of metal ion solution	
on removal percentage metal by poly	
(AAc/PEG/surfactant (4))	139
3.11. ENERGY DISPERSIVE ANALYSIS	140
REFERENCES	145
ARABIC SUMMARY	_

LIST OF FIGURES

No.	Figure Title	Page
1.1	Process of crosslinking of polymer	3
1.2	The structure of surfactant.	6
3.1	IR spectra of 1-chloro-3-(hexadecyloxy)propane-	
	2-OL (1)	55
3.2	IR spectra of 2-((3-carboxyacryloxy)oxy)3-(hexa-	
	decyloxy)-1-propyl chloride (2).	55
3.3	IR spectra of 2-((3-carboxyacryloxy)oxy)-3-	
	(hexa-ecyloxy)-N,N,N-trimethylpropane-1-	
	ammonium chloride (3).	56
3.4	IR spectra of N-(2-(carboxylatomethoxy)-3-	
	(hexadecyloxypropyl)dimethyl glycinate (4).	56
3.5	¹ H NMR spectrum of 2-((3-carboxyacryloxy)	
	oxy)-3-(hexadecyloxy)-N,N,N-trimethylpropane-	
	1-ammonium chloride (3)	58
3.5	¹ H NMR spectrum of 2-((3-carboxyacryloxy)	
	oxy)-3-(hexadecyloxy)N,N,N-trimethylpropane-1-	
	ammonium chloride (3)	58
3.6	¹ H NMR spectrum of N-(2-(carboxylatomethoxy)-	
	3-(hexadecyloxypropyl)dimethyl glycinate (4).	59
3.8	Mass spectrum of N-(2-(carboxylatomethoxy)-3-	
	(hexadecyloxypropyl)dimethyl glycinate (4)	61