

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Evaluation of a plant essential oil encapsulated with silica nanoparticles against the rice moth, *Corcyra cephalonica* Stainton (Lepidoptera: Pyralidae)

A Thesis
Submitted for the Degree of Doctor of Philosophy In Entomology
By

Radwa Gehad Mohamed Attia

(M.Sc. Entomology 2016)

Supervisors

Prof.Dr. Mohamed Adel Hussein

Professor of Toxicology-Entomology Department-Faculty of Science-Ain Shams University

Prof.Dr. Hoda Mohamed Abdel Fattah

Professor of Insect Control-Entomology Department-Faculty of Science-Ain Shams University

Prof.Dr. Mostafa Mohamed Hassan Khalil

Professor of Inorganic Chemistry-Chemistry Department-Faculty of Science-Ain Shams University

Prof.Dr. Salwa Abdou Rizk Mohamed

Researcher Professor-Natural Products Department-National Center for Radiation Research and Technology

Dr. Shireen Ahmed Mahmoud Maamoun

Associate Professor of Entomology-Faculty of Science-Ain Shams University

2020

SUPERVISORS

Prof.Dr. Mohamed Adel Hussein

Professor of Toxicology-Entomology Department-Faculty of Science-Ain Shams University

Prof.Dr. Hoda Mohamed Abdel Fattah

Professor of Insect Control-Entomology Department-Faculty of Science-Ain Shams University

Prof.Dr. Mostafa Mohamed Hassan Khalil

Professor of Inorganic Chemistry-Chemistry Department-Faculty of Science-Ain Shams University

Prof.Dr. Salwa Abdou Rizk Mohamed

Researcher Professor-Natural Products Department-National Center for Radiation Research and Technology

Dr. Shireen Ahmed Mahmoud Maamoun

Associate Professor of Entomology-Faculty of Science-Ain Shams University

Biography

Name: Radwa Gehad Mohamed Attia

Qualification: M.Sc. Entomology 2016

Entomology Department-Faculty of Science-Ain ShamsUniversity

Present Occupation: Assistant Lecturer/ Entomology Department / Faculty

of Science, Ain Shams University.

Date of ph.D registration: 13/2/2017

ACKNOWLEDGEMENTS

"I wish to express my deep thanks to ALLAH who fulfilled my hopes, offered every possible aid for any one in need to it".

I am deeply indebted to **Prof. Dr. Mohamed Adel Hussein,** Professor of Toxicology, Entomology Department, Faculty of science, Ain Shams University for giving me the chance to be one of his students, kind supervision, his faithful encouragement, valuable advice, discussions and for revising the manuscript.

I wish to express my deep gratitude to **Prof. Dr. Hoda Mohammed Abdel Fattah,** Professor of Insect Control, Faculty of Science, Ain Shams University for giving me the chance to be one of her students, serious supervision, endless help, kind encouragement and precious advice during the progress of this study.

I would like to express my thanks to **Prof. Dr. Mostafa Mohamed Hassan Khalil**, Professor of Inorganic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University for his generous advices, valuable discussions and for his help in synthesis of nanoparticles used in the present work.

I am particularly grateful to **Prof. Dr. Salwa Abdou Rizk Mohamed**, Researcher Professor, Natural Products Department, National Center for Radiation Research and Technology for her kind supervision, sincere assistance, kind encouragement, valuable advice and guidance during the progress of this study.

Special thanks to **Dr. Shireen Ahmed Mahmoud Maamoun,** Associate Professor of Entomology, Faculty of Science, Ain Shams University for her continuous help and encouragement during the progress of this study.

Special thanks to **Prof. Dr. Ragaa Elmohammady**, Professor of Entomology and head of Entomology Department, Faculty of Science, Ain Shams University.

Finally, I am indebted forever to my Father, my Mother, my Husband and to my beloved Brother for their help, support and continuous encouragement.

LIST OF ABBREVIATIONS

APS Ammonium persulfate

bp Base pair

CBB Coomassie Brilliant blue

CESN Cinnamon oil encapsulated with silica nanoparticles

Cm³, cc Cubic centimeter

CTAB Cetyl trimethylammonium bromide

EDTA Ethylenediaminetetraacetic acid

gm gram

g/mol gram per mole

kDa Kilo-Dalton

Kg Kilogram

L Liter

LC Lethal Concentration

LD Lethal Dose

LT Lethal Time

M Molar

MSN Mesoporous silica nanoparticles

m meter

mg milligram

ml milliliter

mM millimolar

nm nanometer

ppm Part per million

RH Relative humidity

r.p.m. Revolutions per minute

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SEM Scanning electron microscope

TEM Transmission electron microscope

TEOS Tetraethyl orthosilicate

TEMED N,N,N,N, tetramethyl ethylenediamine

V Volume

μg microgram

μl microliter

μm micrometer

CONTENTS	Page
I- INTRODUCTION	1
II- LITERATURE REVIEW	5
1- Chemical synthesis of silica nanoparticles	5
2- Chemical synthesis of essential oil nanocapsules	9
3- Toxicological and biological effects of nanoparticles on insects	15
4- Toxicological and biological effects of nanocapsules on insects	21
5- Toxicological and biological effects of essential oils on insects	24
6- Toxicological and biological effects of silica gel on insects	30
7- Effect of tested substances on protein of insect	32
8- Effect of tested substances on DNA content of insect	36
9- Effect of tested substances on fine structure of insect integument and midgut	38
III- MATERIALS AND METHODS	43
1- Insect used in the present study	43
2- Rearing technique of insect culture	43
3- Chemicals used	43
3.1. Tested substances	44
3.2. Synthesis of mesoporous silica nanoparticles	48
3.3.Preparation of cinnamon essential oil encapsulation	48
3.4. Characterization and analysis of nanoparticles and nanocapsules	49
4- Experiments	49
4.1.Toxicity of tested substances on 6 th instar larvae of <i>C. cephalonica</i>	49
4.2. Effects of tested substances on some biological aspects of 6 th instar larvae of <i>C. cephalonica</i>	50
5- Statistical analysis	51
6- Biochemical studies	51

6.1.Quantitative analysis of total protein of	51
untreared and treated 6^{th} instar larvae of C .	
cephalonica	
6.2.Qualitative analysis of total protein of untreated	53
and treated 6 th instar larvae of <i>C. cephalonica</i>	
using polyacrylamide gel electrophoresis	
7- Molecular analysis	58
8- Morphological and Ultrastructure Studies	62
8.1. Scanning Electron Microscope (SEM)	62
8.2. Transmission Electron Microscope (TEM)	63
IV- RESULT	66
1- Characterization of mesoporous silica nanoparticles	66
and nanocapsules	
2- Evaluation of insecticidal activity of MSNs, CESN,	73
Essential oils and Silica gel against 6 th instar larvae	
of C. cephalonica	
2.1. Toxicity and persistence of MSNs on C.	84
cephalonica larvae.	
2.2. Toxicity and persistence of CESN on C.	89
cephalonica larvae.	
2.3. Toxicity and persistence of cinnamon oil on	94
C. cephalonica larvae.	
2.4.Toxicity and persistence of silica gel on <i>C</i> .	99
cephalonica larvae.	
2.5. Toxicity and persistence of peppermint oil	103
on <i>C. cephalonica</i> larvae.	
3- Evaluation of Time-Response	108
4- Effect of LC ₅₀ concentrations of tested substances	110
on some biological aspects of <i>C. cephalonica</i> .	
5- Biochemical studies	114
5.1. Quantitative analysis of total protein	114
5.2. Qualitative analysis of total protein	116
6- Molecular studies	126
<u> </u>	120
7- Effect of MSNS and CESN on the integument and	128
midgut of the 6 th instar larvae of <i>C. cephalonica</i>	
7.1. Ultrastructure of integument surface of <i>C</i> .	128
cephalonica larvae	
7.2. Histological Studies	136

V- DISCUSSION	147
VI- SUMMARY	166
VII- REFERENCE	170
ARABIC SUMMARY	

List of Tables

No.	Title	Page
1	Percentage of mass and atom of MSNs	69
2	Mean percentage mortality of <i>C. Cephalonica</i> larvae, LC ₅₀ and LC ₉₅ , their 95% confidence limits and slope of tested substances.	75
3	The effect of different concentrations of MSNs on percentage mortality of <i>C. cephalonica</i> larvae.	86
4	The effect of different concentrations of CESN on percentage mortality of <i>C. cephalonica</i> larvae.	91
5	The effect of different concentrations of cinnamon oil on percentage mortality of <i>C. cephalonica</i> larvae.	96
6	The effect of different concentrations of silica gel on percentage mortality of <i>C. cephalonica</i> larvae.	101
7	The effect of different concentrations of peppermint oil on percentage mortality of <i>C. cephalonica</i> larvae.	105
8	Sub-lethal time of tested substances	108
9	Effect of LC ₅₀ concentrations of tested substances on some biological aspects of <i>C. cephalonica</i> .	112
10	Amount of total protein of treated and untreated <i>C. cephalonica</i> larvae with LC ₅₀ of tested substances.	114
11	Molecular weight of SDS-protein patterns of both treated and control samples of <i>C. cephalonica</i> larvae.	122
12	Raw volume of SDS-protein pattern of both treated and control samples of <i>C. cephalonica</i> larvae.	123

13	Rate of flow (RF) of SDS-protein pattern of both treated and control samples of <i>C. cephalonica</i> larvae.	124
14	Polymorphism of SDS electrophoretic protein pattern of both treated and control samples of <i>C. cephalonica</i> larvae.	125
15	List of polymorphic and monomorphic band numbers of both treated and control samples of <i>C. cephalonica</i> larvae.	126

List of Figures

No.	Title	Page
1	Chemical structure of tetraethyl orthosilicate	44
2	Chemical structure of silica gel	45
3	Chemical structure of cinnamon oil	46
4	Chemical structure of peppermint oil	47
5	Standard curve of bovine serum albumin	53
6	a) SAXRD of synthesized MSNs and CESNb) WAXRD of MSNs	67
7	FTIR spectra of MSNs and CESN	68
8	SEM image of synthesized Mesoporous Silica Nanoparticles	69
9	EDX spectra of synthesized Mesoporous Silica Nanoparticles	69
10	The N ₂ adsorption/desorption isotherm of MSNs and CESN	70
11	Pore size distribution of MSNs and CESN	71
12	(a) SEM micrograph of separated spherical arrangement of MSNs.(b) TEM image represent the highly uniform spherical arrangement of MSNs with particle size around 500 nm.	72
13	SEM micrograph of CESN showing loading of cinnamon oil (CO) into the mesoporous cavities of silica nanoparticles.	72
14	Effect of MSNs concentrations on the percent of mortality of <i>C. cephalonica</i> larvae.	76
15	Effect of CESN concentrations on the percent of mortality of <i>C. cephalonica</i> larvae.	77
16	Toxicity of 15 mg MSNs and CESN against <i>C. cephalonica</i> larvae after 22 days of exposure.	78
17	Toxicity of 30 mg MSNs and CESN against <i>C. cephalonica</i> larvae after 20 days of exposure.	79
18	Effect of cinnamon oil concentrations on the percent of mortality of <i>C. cephalonica</i> larvae.	80