

Role of CT and modified Response Evaluation Criteria in Solid Tumors (RECIST criteria) in response evaluation of malignant pleural mesothelioma

Thesis

Submitted for partial fulfillment of Master degree in **Diagnostic Radiology**

Presented by

Basma Abdelbaset Mohamed Mohamed
M.B. B.Ch.

Supervised by

Prof. Dr. Khalid Esmat Allam

Professor in Diagnostic Radiology Faculty of Medicine, Ain Shams University

Dr. Hend Galal El-Deen Mohamed

Lecturer of Diagnostic Radiology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shames University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Khalid Esmat**Allam, Professor in Diagnostic Radiology, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Hend Galal El-Deen**Mohamed, Lecturer of Diagnostic Radiology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Basma Abdelbaset

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy of the Pleura	5
Malignant Pleural Mesothelioma	17
Role of imaging in diagnosis, Staging a Evaluation of Malignant Pleural Mesothelioma	
Follow up by CT and Modified RECIST Criteria	a 43
Patients and Methods	48
Results	52
Case Presentations	59
Discussion	79
Summary, Conclusion and Recommendations	85
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.	
Table (1):	Morphological Subtypes of Malignant Mesothelioma		3
Table (2):	The American Joint Committee on Cancer and the Union Internationale Contre le (UICC) Staging System	Cancer	6
Table (3):	TNM Staging		
Table (4):	CECT technique in El Demerdash Hospital	5	0
Table (5):	The age groups of the studied patients:	5	2
Table (6):	Geoographic distribution among the patients:	studied	
Table (7):	Laterality among the studied patients:	5	4
Table (8):	Improvement of tumor size among the patients		4
Table (9):	Relation between findings by CT and examination:		5
Table (10):		5	5
Table (11):	Relation between findings by CT and examination		6
Table (12):	Diagnostic accuracy of CT as a prediction outcome of the studied patients accordinical examination	ding to	6
Table (13):	Comparison between tumor size at 2 nd fo and Nadir by CT	-	7
Table (14):	Comparison between tumor size at 2 nd fo and baseline by CT	-	7
Table (15):	Comparison between tumor size at baseline 2 nd follow up by CT		8
Table (16):	Diagnostic accuracy of CT as a predict responders of the studied patients accordinical examination	ctor for ding to	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The parietal and viscera pleura, and t	
Figure (2):	Anatomy of the pleura cavity	6
Figure (3):	The parts of parietal pleura	6
Figure (4):	Pleural recess	10
Figure (5):	Nerves supplying the pleural layers	13
Figure (6):	The five pleural layers can be seen in stained image	
Figure (7):	Epidemic of mesothelioma in Egypt	19
Figure (8):	Photograph of the gross pathologic spe sagittally)	22
Figure (9):	Malignant pleural mesothelioma. posteroanterior chest X-ray	
Figure (10):	Malignant pleural mesothelioma. Axia enhanced CT images in arterial	
Figure (11):	Malignant pleural mesothelioma contrastenhanced CT image	
Figure (12):	Malignant pleural mesothelioma. weighted MR images showing a iso/hypoi	
Figure (13):	Malignant pleural mesothelioma. As wellcollimated PET/CT image	
Figure (14):	Malignant pleural mesothelioma. Axial U	JS scan42
Figure (15):	Axial CT image demonstrating 2 meataken at the same level	
Figure (16):	Gender distribution among the studied p	atients53
Figure (17):	Improvement of tumor size among the patients	
Figure (18):	Case (1): Contrast enhanced axial CT schest	
Figure (19):	Contrast enhanced axial CT scan of the c	hest60
Figure (20):	Contrast enhanced axial CT scan of the c	hest61

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (21):	Case (2): Contrast enhanced axial CT chest	
Figure (22):	Contrast enhanced axial CT scan of the	chest64
Figure (23):	Contrast enhanced axial CT scan of the	chest65
Figure (24):	Case (3): Contrast enhanced axial CT chest	
Figure (25):	Contrast enhanced axial CT scan of the	chest68
Figure (26):	Contrast enhanced axial CT scan of the	chest69
Figure (27):	Case (4): Contrast enhanced axial CT chest	
Figure (28):	Contrast enhanced axial CT scan of the	chest72
Figure (29):	Contrast enhanced axial CT scan of the	chest73
Figure (30):	Case (5): Contrast enhanced axial CT chest	
Figure (31):	Contrast enhanced axial CT scan of the	chest76
Figure (32):	Contrast enhanced axial CT scan of the	chest77

List of Abbreviations

Abb.	Full term
------	-----------

ADC	.Apparent diffusion coefficient
AJCC	.American Joint Committee on Cancer
<i>CECT</i>	. Contrast-enhanced computed tomography
CR	. Complete response
CT	$. \ Computed \ tomography$
<i>DMM</i>	. Diffuse malignant mesothelioma
FOV	. Field of view
IMIG	. International Mesothelioma Interest Group
<i>IV</i>	. Intravenous
<i>IVC</i>	.Inferior vena cava
Kv	. Kilovolt
<i>LMMs</i>	$. Localized\ malignant\ mesotheliom as$
<i>M</i>	.Distant metastases
<i>mA</i>	. milliampere
<i>MDCT</i>	$. Multidetector\ computed\ tomography$
<i>MM</i>	$. Malignant\ mesothelioma$
<i>MPM</i>	. Malignant pleural mesothelioma
mRECIST	. Modified Response Evaluation Criteria in Solid Tumors
MRI	. Magnetic resonance imaging
<i>N</i>	.Regional lymph nodes
<i>PA</i>	. Postero anterior
PD	. Progressive disease

List of Abbreviations (Cont...)

Abb.	Full term
<i>PET</i>	Positron emission tomography
PR	Partial response
RECIST	Response Evaluation Criteria in Solid Tumors
<i>SD</i>	Stable disease
SUV	Standardized uptake value
SV40	Simian vauolating virus 40
T	Primary tumor
<i>UICC</i>	Union Internationale Contre le Cancer
<i>US</i>	Ultrasonography
<i>WDPMs</i>	Well differentiated papillary mesotheliomas
<i>WHO</i>	World Health Organization

Introduction

alignant pleural mesothelioma is an infrequent neoplasm. However, MPM is the most common primary malignancy of the pleura (*Dogan et al.*, 2012).

It is locally aggressive neoplasm that originate in the serosal membrane that line the thoracic cavity with invasion of the chest wall, mediastinum and diaphragm (*Truong et al.*, 2013).

The disease has become an important health issue over recent years since the incidence of malignant pleural mesothelioma has risen for some decades and is expected to peak between 2010 and 2020 due to the patterns of occupational exposure (*Moore et al., 2008*).

There is strong association between malignant mesothelioma and asbestos exposure is observed however, reports suggest that radiotherapy may also cause mesothelioma and genetic factors may also play a role in malignant pleural mesothelioma (*Testa et al.*, 2013).

So those employed in manufacture and industrial use of asbestos and those remotely connected with asbestos or living near asbestos plants are at risk of developing mesothelioma.

The prognosis is poor, with a median survival time of 12 months after diagnosis. Several factors have been shown to correlate with reduced survival time which are intrathoracic lymph node metastases, distant metastatic disease, and extensive pleural involvement (*Nickell et al.*, 2014).

Malignant pleural mesothelioma is not a simple disease to diagnose and most frequently achieved with careful review of clinical and radiological finding in addition to confirming tissue biopsy (Husain et al., 2009).

Radiological imaging plays an important role in diagnosis, staging, treatment planning, response assessment, and follow up of Malignant pleural mesothelioma patients. Several modalities are available including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and PET/CT. CT scan is the primary imaging technique that used because of its ability to provide anatomic details of both normal and abnormal structures, its wide availability, and relatively low cost (Armato III et al., 2008).

findings that suggest Key CT malignant pleural mesothelioma include unilateral pleural effusion, nodular pleural thickening and interlobar fissure thickening. Growth typically leads to tumoral encasement of the lung with a rind like appearance (Nickell et al., 2014).

Most patients with malignant pleural mesothelioma are candidates for chemotherapy during the course of their disease. Assessment of the response with conventional criteria depend on computed tomography (CT) measurements is challenging, due to the circumferential and axial pattern of growth of MPM. Such difficulties discourage an accurate evaluation of clinical study results and make the clinical management of patients

critical. Several radiological response systems have been proposed, but neither WHO criteria nor the recent RECIST unidimensional criteria nor hybrid uni- and bidimensional criteria seem to apply to tumor measurement in this disease. Recently, modified RECIST criteria for malignant pleural mesothelioma have been published (Robinson & Lake 2005).

The current clinical method for tumor response assessment in mesothelioma is the modified Response Evaluation Criteria in Solid Tumors (RECIST) guidelines, which calls for two linear measurements of tumor thickness to be summed from each of three axial sections, primarily in computed tomography (CT) scans. To classify patients into response categories, progressive disease (PD) is a summed measurement increase between scans larger than 20%, partial response (PR) is a summed measurement decrease of 30% or more, and stable disease (SD) is any measurement change between -30% and +20% (*Labby et al.*, 2012).

AIM OF THE WORK

o assess the value of CT and modified RECIST criteria in follow up evaluation patients of malignant pleural mesothelioma during treatment with chemotherapy.

ANATOMY OF THE PLEURA

1) Gross anatomy

Pleura is a serous membrane which folds back on itself to form a two-layered membranous pleural sac. It consisting of two layers: The outer layer is called parietal pleura and attaches to the chest wall, The inner layer is called visceral pleura and covers the lungs, blood vessels, nerves, and bronchi (Adeyinka and Pierre, 2018). Between them There's a potential thin space known as the pleural cavity that contains a small amount of pleural fluid (Charalampidis et al., 2015) (Fig.1)

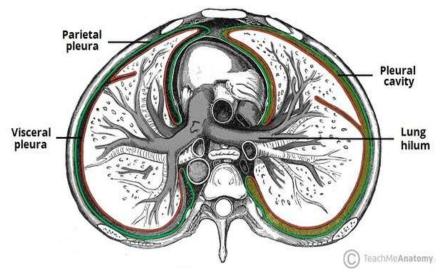


Figure (1): The parietal and viscera pleura, and the pleural cavity (*TeachMeAnatomy*, 2020)

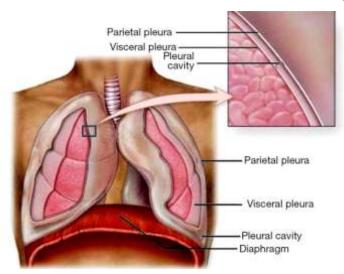


Figure (2): Anatomy of the pleura cavity (*Charalampidis et al.*, 2015)

Parietal Pleura

Different portions of the parietal pleura have received special names which indicate their position thus (*Gray*, 2012) (Fig. 3)

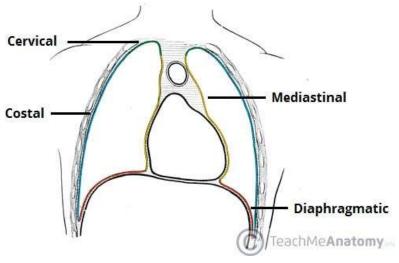


Figure (3): The parts of parietal pleura (TeachMeAnatomy, 2020)