

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Role of 18 FDG PET/CT Imaging in Assessment of Neoadjuvant Chemotherapy Response in Breast Cancer Patients

Thesis

Submitted for Partial Fulfillment of MD degree in Radiodiagnosis

By

Fslam Abdul Salam Sarhan

MSc Radiodiagnosis International Medical Center

Supervised by

Prof. Dr. Mervat Ibrahim El Gohary

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Prof. Dr. Lobna Abd El Moneim

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Susan Adil Ali Abdul Rahim

Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AllAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Meroat Ebraheem Al gohary,** Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Lobna Abdel Moneim Habib**, Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Dr.Suzan Adil Abdul Raheim**, Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University, for her kindness, supervision and cooperation in this work.

Eslam Sarhan

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	vi
Introduction	1
Aim of the Work	3
Review of Literature	
Anatomical Background	4
Pathology of Breast Cancer And The Clinical Im of The Intrinsic Molecular Subtypes	_
Physical Background & Technical Aspects of PE	T/CT32
Patients and Methods	60
Results	71
Illustrative Cases	84
Discussion	112
Summary & Conclusion	121
References	123
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (3-1): Table (4-1):	Imaging properties of various PE Miller-Payne grading system	· ·
Table (5-1):	Distribution of the studied patient to Breast lesion response to cheme CT, SUVmax, and Pathology	ts according otherapy on
Table (5-2):	Validity of CT for prediction of chemotherapy among the studied	_
Table (5-3):	Validity of Suvmax for prediction lesion response to chemotherapy studied patients	among the
Table (5-4):	Breast lesion on CT pre chemo relation to baseline & Bre characteristics among the studied	ast lesion
Table (5-5):	Breast lesion on CT post chemorelation to baseline & Brecharacteristics among the studied	ast lesion
Table (5-6):	Breast lesion on Suvmax pre che in relation to baseline & Bre characteristics among the studied	east lesion
Table (5-7):	Breast lesion on Suvmax post che in relation to baseline & Bre characteristics among the studied	emotherapy east lesion

List of Figures

Fig. No.	Title	Page No.
E' (1.1)	Donat colling	۲
Figure (1-1):	Breast architecture	
Figure (1-2):	Breast profile	
Figure (1-3):	The intra and extralobular ducts.	
Figure (1-4):	Arterial & venous networks of the architecture	
Figure (1-5):	The boundaries of the axilla	10
Figure (1-6):	Diagram of the principal path lymphatic drainage of the breast	-
Figure (1-7):	The lymph nodes of the axilla	12
Figure (2-1):	Histological classification of breas	st cancer15
Figure (3-1):	Illustrative diagram of combined	PET/CT
	scanner components	33
Figure (3-2):	Photograph (side view) of a hybrid scanner shows the PET (P) and	
	components	
Figure (3-3):	Typical imaging protocol for o	
Figure (3-4):	Positron-electron annihilation rea	ction37
Figure (3-5):	Glucose and fluorodeoxyglucose st	tructure39
Figure (3-6):	Uptake of 18F-FDG. 18F-FDG is a analog that is taken up by meta active cells by means of fatransport via glucose transporter in the cell membrane	abolically acilitated rs (Glut)
Figure (3-7):	Graph shows bilinear scaling used to convert CT numbers t attenuation values at 511 KeV	function to linear
Figure (3-8):	Mean positron range and ann angle blurring	
Figure (3-9):	Coincidence imaging	

List of Figures Cont...

Fig. No.	Title Page N	lo.
Figure (3-10):	Normal distribution of 18F-FDG	51
Figure (3-11):	Bowel uptake. 18F-FDG-PET whole-body scan for staging of inflammatory carcinoma of the left breast	52
Figure (3-12):	61-y-old patient with lung cancer who ingested barium for an esophagogram 1 day before PET/CT scan	55
Figure (3-13):	High-density metallic implants generate streaking artifacts and high CT numbers (arrow) on CT image	56
Figure (3-14):	Attenuation-corrected axial fused 18F-FDG PET/CT image shows a focus of hypermetabolism in the left axilla (arrow).	57
Figure (3-15):	Curvilinear cold artifact (arrow) is commonly seen on dome of diaphragm/liver or at lung base because of respiration mismatch on PET images with CT attenuation correction	
Figure (3-16):	58-y-old man with colon cancer	
Figure (4-1):	PET/CT scanner LYSO-based PET with a 64-channel CT.	
Figure (5-1):	Correlation between tumor size on CT and SUVmax pre chemotherapy among the studied patients	72
Figure (5-2):	Correlation between tumor size on CT and SUVmax post chemotherapy among	
Figure (5-3):	Bar chart for distribution of the studied patients according to Breast lesion response to chemotherapy on CT, Suvmax, and Pathology	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (6-1):	PET CT scan showing right bree measuring 4.0 x 3.0 cm with SUV n	
Figure (6-2):	Follow up PET CT scan showing size of right breast mass and value at the end of chemotherapy.	decreased SUVmax
Figure (6-3):	PET CT scan showing right bromeasuring 6.5 x 5.5 cm with SUV m	east mass
Figure (6-4):	Follow up PET CT scan decreased size of right breast in SUVmax value=2.7 after compachemotherapy.	mass and oletion of
Figure (6-5):	PET CT scan showing right bree measuring 5.7 x 3.2 cm with SUV	east mass
Figure (6-6):	Follow up PET CT scan showing decrease in size decrease in suv	g minimal max from
Figure (6-7):	PET CT scan showing right breameasuring 5 x 4.2 cm with =14.4. And left breast mass meas x 2 cm with SUVmax =9.3	east mass SUVmax suring 2.5
Figure (6-8):	Follow up PET CT scan showing time interval decrease in SUV size right breast mass measuring cm with SUVmax =3.9. And lemass measuring 1.7 x 1.4	g marked max and ag 2.5 x 2 eft breast cm with
Figure (6-9):	SUVmax = 2.6 PET CT scan showing right bre measuring 6.6 x 2.6 cm with	east mass SUVmax
Figure (6-10):	PET CT scan showing right bree measuring 5.6 x 2.1 cm with SUV	east mass

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (6-11):	PET CT scan showing right measuring 3.6 x 2.9 cm with 3	
Figure (6-12):	Follow up PET CT scan sl breast mass measuring 2.6 x SUVmax 2.1.	1.7 cm with
Figure (6-13):	PET CT scan showing right measuring 4.8 x 3 cm with SU	
Figure (6-14):	Follow up PET CT scan sl breast mass measuring 2.6 x SUVmax 2.1	1.7 cm with
Figure (6-15):	PET CT scan showing right measuring 20 x 16 cm with S	
Figure (6-16):	PET CT scan showing right measuring 13x11mm with SU	
Figure (6-17):	PET CT scan showing left measuring 23x11mm with SU	
Figure (6-18):	PET CT scan showing left measuring 23x 9 mm with SU	
Figure (6-19):	PET CT scan showing left opera measuring 2 x 0.8 cm with SUV	
Figure (6-20):	PET CT scan showing left opera measuring 2.4 x 1 cm with SUV	

List of Abbreviations

Abb.	Full term
CT	Computed tomography
DC	Ductal carcinoma
DCIS	Ductal carcinoma in situ
ER	Estrogen receptors
FDG	Flurodeoxy glucose
FN	False negative
FP	False positive
IDC	Invasive ductal carcinoma
IDC NIS	Invasive ductal carcinoma nospecific type
ILC	Invasive lobular carcinoma
LC	Lobular carcinoma
LICS	Lobular carcinoma in situ
MC	Medullary carcinoma
NAC	Neoadjuvant chemotherapy
NET	Neuro-endocrine tumor
NPV	Negative predictive value
pCR	Pathologic complete response
PERCIST	PET response criteria in solid tumors
PET	Positron emission tomography
PPV	Positive predictive value
PR	Progesterone receptors
RECIST	Response Evaluation Criteria in Solid Tumors
SUVmax	Maximum Standardized uptake value
TN	True negative
TP	True positive

Introduction

Preast carcinoma is the most frequently diagnosed life-threatening cancer in women and leading cause of cancer death among women. In Western Europe and the United States the incidence is highest in the 40 - 55 age range, and its prevalence is still on rise. It accounts for 40,000 and 14,000 deaths yearly in the US and UK, respectively, and that makes it the second cause of cancer death in women in those countries (Yun et al., 2012).

Positron emission tomography (PET) with 18 fluorine (18f) flurodeoxy glucose (FDG) has an important role in oncology. Its role in management of breast cancer is evolving. These past years, combined PET and computed tomography (CT)(PET\CT) systems have replaced PET alone in most nuclear medicine departments. The CT portion of PET\CT provides the anatomic information useful for accurate interpretation of PET signal. It also provides a map used for attenuation correction of PET images (*Groheux et al.*, 2013).

Imaging of metabolic pathways serves as an alternative way for visualizing the treatment effects; furthermore, metabolic reduction within the tumor precedes the anatomic response to therapy. PET with 18 F- FDG has been used to evaluate the clinical response to NAC in patient with breast cancer. Metabolic reduction often occurs early in the course of therapy and precedes reduction in size of the tumor, because

morphologic changes of the tumor occur much later than the metabolic response. The 18F-FDG uptake, expressed semiquantitatively by standardized uptake value (SUV), in interim PET studies has been reported as a strong predictor of clinical and pathologic response. Metabolic reduction detected between base line and early phase of NAC can provide early information on potential tumor response (Tateishi et al., 2012).