

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

FACULTY OF ENGINEERING

Mechanical Power Engineering

A numerical study of the effect of the compression ratio on the biodiesel fuel spray characteristics at different blending ratios, 2020.

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science In Mechanical Engineering

(Mechanical Power Engineering)

By

Nourhan Hesham Said

Bachelor of Science In Mechanical Engineering

(Mechanical Power Engineering)

Faculty of Engineering, German university in Cairo, 2013

Supervised By

Prof. Mahmoud Kamal.

Dr. Mostafa Abdelkhalek

Dr. Ashraf Mostafa

Cairo - (2020)

The underdesigned certify that they have read and recommend to the faculty of engineering Ain Shams university .for acceptance of thesis entitled:

A numerical study of the effect of the compression ratio on the biodiesel fuel spray characteristics at different blending ratios, 2020.

By

Nourhan Hesham said

Bachelor of Science In Mechanical Engineering

(Mechanical Power Engineering)

Faculty of Engineering, German university of Cairo, 2013

Examiners' Committee

Name and Affiliation	Signature
Prof.	
Sameh Metwally	
Prof.	
Adel Abdel-malek Elahwany	
Prof.	
Mahmoud Mohamed Kamal	
Dr. Mostafa abdelkhalek	

Date:27 September 2020

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Nourhan	Hesham	hiez
1 1 Vui iiaii	HUSHain	Salu

Signature

Date:27 September 2020

Researcher Data

Name : Nourhan Hesham said.

Date of birth : 1/10/1990.

Place of birth : Cairo.

Last academic degree : Bachelor of Science.

Field of specialization : Mechanical Engineering.

University issued the degree : German university of Cairo.

Date of issued degree : 2013.

Thesis Summary

In this thesis a Computational fluid dynamic study was done to study the influence of various compression ratios and various mixing ratios of biodiesel on the characteristics of the spray. A three dimensional numerical simulation was done using ANSYS-FLUENT by using internal combustion engine module. This simulation was done on a 4-stroke engine for a Ruggerini RD 270 engine. A cold flow simulation was carried for the engine with compression ratio 18 and it was validated against [31]. Another two cold flow simulations for compression ratios 17 and 16 were done upon this validation. After that a model for diesel spray was added to the cold flow engine with compression ratio 18 and it was validated against [31] by comparing the penetrating length for the two models. Upon that a models for sprays for Diesel and for various mixing ratios for Biodiesel 20%, 60% and were integrated to the three compression ratio engines 18, 17, and 16 respectively to study the effect of different compression ratios and the various biodiesel mixing ratios on the length of the penetrating spray of fuel and it is found that as the compression ratio increased the penetrating length decreased, the mass fraction increased the turbulent increased and the droplet size decreased which means that the high compression ratio enhance the performance of the biodiesel.

Key words: CFD, Biodiesel, Penetrating length, Compression ratio.

Research Paper

A numerical study of the effect of the compression ratio on the biodiesel fuel spray characteristics at different blending ratios, 2020.

Table of Content

CHAPTER 1. INTRODUCTION	16
1.1 Back ground	16
1.1.1 Energy consumption and the environmental pollution	17
1.1.2 Direct injection	20
1.1.3 Fuel spray	20
CHAPTER 2. LITERATURE REVIEW	23
2.1 Spray Characteristics	23
2.2 Numerical and experimental research	27
CHAPTER 3. MATHEMATICAL MODELING	34
3.1. Multiphase flow	34
3.1.1 Introduction	34
CHAPTER 4. MODEL VALIDATION, RESULTS AND DISCUSSION Conclusion	
4.1 Engine specifications	4 4
4.2 Engine CFD Modelling	4′
4.3 Results and discussion	5
4.4 Conclusion	87
REFERENCES	Q(

List of Figures

Figure 1.1: Green Diesel16
Figure 1.2: World energy demand18
Figure 1.3: Primary energy consumption19
Figure 1.4: Global CO2 emission regulations for passenger cars19
Figure 1.5: Schematic of a DISI engine cylinder20
Figure 1.6: direct injection spray forms21
Figure 2.1: the cone spray24
Figure 2.2: break up regimes26
Figure 2.3: Ohnesorge27
Figure 3.1: mass exchange40
Figure 4.1: Ruggerini RD 952 specifications45
Figure 4.2: piston dimension45
Figure 4.3: valve dimensions46
Figure 4.4: Engine geometry using Inventor-CAD47
Figure 4.5: Meshing process48
Figure 4.6: Velocity contour48
Figure 4.7: Cylinder pressure in Pascal vs. Crank angles in degree49
Figure 4.8: Fine mesh resolution50
Figure 4.9: coarse mesh resolution51
Figure 4.10: pressure in Pascal vs. crank angle in degree for coarse mesh resolution52
Figure 4.11: pressure in Pascal vs. crank angle in degree for the engine having compression ratio 1753
1 auv 1/,5

Figure 4.12: pressure in Pascal vs. crank angle in degree for the engine having compressio ratio 16	
Figure 4.13: penetrating length of diesel spray of current study vs. the reference penetrating length [31] CR= 185	6
Figure 4.14: penetration length of diesel spray at different compression ratio5	7
Figure 4.15: penetrating length for different mixing ratios for compression ratio CR= 18.	
Figure 4.16: penetrating length for different mixing ratios for compression ratio CR= 17.	
Figure 4.17: penetrating length for different mixing ratios for compression ratio CR= 16.	
Figure 4.18: penetrating length of biodiesel for mixing ratio 100 % at different compression ratio.	
Figure 4.19: temperature contour of diesel at compression ratio 186	0
Figure 4.20: temperature contour of biodiesel for mixing ratio 100 % at compression ratio 186	
Figure 4.21: turbulent contour for diesel for CR= 166	52
Figure 4.22: turbulent contour for diesel for CR= 176	53
Figure 4.23: turbulent contour for diesel for CR= 186	54
Figure 4.24: mass fraction contour for diesel for Cr=166	5
Figure 4.25: mass fraction contour for diesel for Cr=176	6
Figure 4.26: mass fraction contour for diesel for Cr=186	7
Figure 4.27: mass fraction contour for biodiesel 20% for Cr=166	8
Figure 4.28: mass fraction contour for biodiesel 20% for Cr=1769	9
Figure 4.29: mass fraction contour for biodiesel 20% for Cr=1870	0
Figure 4.30: turbulent contour for biodiesel 20% for Cr=167	1
Figure 4.31: turbulent contour for biodiesel 20% for Cr=17	72
Figure 4.32: turbulent contour for biodiesel 20% for Cr=18	73

Figure 4.33: mass fraction contour for biodiesel 60% for Cr=16	74
Figure 4.34: mass fraction contour for biodiesel 60% for Cr=17	75
Figure 4.35: mass fraction contour for biodiesel 60% for Cr=18	70
Figure 4.36: turbulent contour for biodiesel 60% for Cr=16	77
Figure 4.37: turbulent contour for biodiesel 60% for Cr=17	78
Figure 4.38: turbulent contour for biodiesel 60% for Cr=18	79
Figure 4.39: mass fraction contour for biodiesel 100% for Cr=16	80
Figure 4.40: mass fraction contour for biodiesel 100% for Cr=17	81
Figure 4.41: mass fraction contour for biodiesel 100% for Cr=18	82
Figure 4.42: turbulent contour for biodiesel 100% for Cr=16	83
Figure 4.43: turbulent contour for biodiesel 100% for Cr=17	84
Figure 4.44: turbulent contour for biodiesel 100% for Cr=18	85
Figure 4.45: Sateur mean diameter graph	86

List of Tables

Table 4.1: Ruggerini RD 270 engine specifications	44
Table 4.2: piston dimension	46
Table 4.3: valve dimensions	46
Table 4.4: Grid independency study	50
Table 4.5: spray system specifications	54
Table 4.6: DPM model	55

List of Abbreviations

CO Carbon Monoxide

CO2 Carbon Dioxide

G100 Pure Diesel

G20 20% gasoline blended dieseline

NI National Instruments

NOx Nitrogen Oxides

CFD Computational Fluid Dynamics

KHRT Kelvin-Helmholtz & Rayleigh-Taylor

SMD Sauter Mean Diameter

DISI Direct Injection Spark Ignition