

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Performance evaluation of polyacrylonitrile-based polymeric composites as dual-function sorbents for some pollutants of interest to nuclear activities

A Thesis Submitted by

Moustafa Ali Moustafa Hamoud

M.Sc. chemistry (2014)

Assistant Lecturer

Nuclear Chemistry Department – Hot Laboratories Center Atomic Energy Authority

To

Chemistry Department-Faculty of Science-Ain Shams University

For

The degree of Ph.D of science in chemistry

2020

Dedicated to

(The Soul of my Parents and Prof. Dr. Wafaa Sanad)

To

My Brothers, My Lovely Wife and My kids

All of those who

Love me

Moustafa Ali Moustafa

Acknowledgment

First, I am deeply thankful to my God "Allah", by the grace of whom, the progress and success of this work was possible.

I would like to express my deep gratitude to **Prof. Dr. Ebtissam**Ahmed Saad prof. of Radio and Inrganic Chemistry, Faculty of Science,

Ain Shams University; for his sponsorship and moral support of this work,.

I am greatly indebted to "late" Prof. Dr. Wafaa Sanad, Prof. of Radiochemistry, Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority (EAEA); for her continuous supervision, and valuable discussions and I hope my God bless her soul.

I would like to express my sincere appreciation to **Prof. Dr.** Karam Allan, Prof. of Radiochemistry, Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority (EAEA); for his continuous supervision, and valuable discussions.

I am greatly indebted to Ass. prof. Dr. Mamdoh Refaat, Ass. Prof. of Radiochemistry, Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority (EAEA); for suggesting the topics of this thesis, planning of the experimental work, effective supervision, valuable discussions, sincere advices, and continuous encouragement during all phases of carrying this work.

Thanks are also expressed to **Prof. Mohamed Holiel** and **Prof. Refaat Ragheb**, Emeritus Profs., Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority (EAEA); for their unlimited help during the experimental work.

The assistance and support of all staff members of the Nuclear Chemistry Department, notably of Ass. prof. Dr. Saber Ibrahim Mohamed are deeply appreciated.

Finally, I would like to express my deep thanks to my family for their unlimited support, and looking after me.

Publications

From chapter III of this thesis, the following publication is extracted:

Journal of Radioanalytical and Nuclear Chemistry (2020) 324:647-661 https://doi.org/10.1007/s10967-020-07098-5

Synthesis of PAN/ferrocyanide composite incorporated with cetrimonium bromide and its employment as a bifunctional adsorbent for coremoval of Cs⁺ and HCrO₄⁻ from aqueous solutions

Moustafa A. Hamoud¹ · Karam F. Allan¹ · Wafaa A. Sanad¹ · Ebtissam A. Saad² · Mamdoh R. Mahmoud¹

Received: 24 November 2019 / Published online: 17 March 2020

Akadémiai Kladó, Budapest, Hungary 2020

Abstract

Polyacrylonitrile/ferrocyanide composite incorporated with cetrimonium bromide (PFICB) was synthesized and evaluated as a novel bifunctional adsorbent for coremoval of Cs^+ and $HCrO_4^-$. Results of the reaction time effect showed that adsorption of Cs^+ and $HCrO_4^-$ onto PFICB were rapid processes. The effect of the solution pH in the range 2.5–10 revealed that PFICB had the ability to simultaneously remove Cs^+ and $HCrO_4^-$. The maximum adsorption capacity of PFICB was found to be 41.79 mg/g for Cs^+ and 19.39 mg/g for $HCrO_4^-$. These values were compared with those reported in literature using other adsorbents.

Keywords Ferrocyanide · Cesium · Chromate · Polyacrylonitrile · Adsorption · Coremoval

Introduction

Chemical precipitation, solvent extraction, membrane separation, adsorption and foam separation are the traditional methods applied for removal of radioactive materials from aqueous solutions [1-5]. Nevertheless, utilization of these methods is challenged by the occurrence of cationic and anionic radio-toxicants in radioactive liquid wastes where multi-treatment processes and/or multi-steps are required which is undesirable particularly from the economic point of view. A one-step treatment process is therefore necessary to avoid such drawbacks. Herein, researchers' efforts in our laboratory have been directed in the last years to find appropriate one-step processes for treatment of radioactive liquid wastes contaminated with cationic and anionic radionuclides. Results of these studies showed the potentiality to simultaneously remove 60Co2+ and HCrO4-[6], 63Ni2+ and 51CrO42- [7] and 137Cs+ and 99TcO4- [8]. Besides,

As3+/SO42- [9], TI+/CI- [10], Cu2+/HCRO4- [11], Cd2+/ HAsO₄²⁻ [12], Cu²⁺/SO₄²⁻ [13], Pb²⁺/NO₃⁻ [14], As³⁺/ HAsO₄-[15] and Cd²⁺/CN-[16] binary systems have been studied in literature. However, simultaneous removal of cationic and anionic species in these publications is governed by the utilization of multi-step treatment processes. Regarding these published papers, it can be seen that simultaneous removal of 134Cs+ and HCrO4-, which are the concerned species in the current study, has not been studied yet. Cesium radionuclides are found in radioactive liquid wastes owing to their applications in many fields such as radiochemistry, medicine, mineral processing, industry and food irradiation [17, 18]. Owing to its solubility and similarity to other alkali elements (e.g. K+ and Na+), cesium ion easily absorbs by plants. If ingested, it creates an internal hazard particularly to the reproductive system [19]. Radioisotope production and radiochemistry research laboratories can be responsible for the existence of hexavalent chromium radionuclide (31Cr(VI)) in radioactive liquid wastes. Besides its radiotoxicity, hexavalent chromium exhibits a chemical toxicity when presents in aqueous solutions at concentrations higher than the admissible ones as it has been reported to be mutagenic and carcinogenic in human [20]. Therefore, such contaminants must be removed from aqueous solutions before being discharged into the environment.

Among the abovementioned treatment processes, adsorption process is extensively applied for removal of

Mamdoh R. Mahmoud mamdoh.refaat@eaea.org.eg

Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, P.O. Box 13759, Inshas, Cairo, Egypt

Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Contents

Contents	Page
List of tables	v
List of figures	vi
List of abbreviations	X
Preface and objective of the work	xi
Abstract	xii
CHAPTER I: Introduction	
1.1. Background	1
1.2. Treatment technologies for liquid wastes	2
1.3. Adsorption	8
1.3.1. Introduction and terminology	8
1.3.2. Adsorption steps	9
1.3.3. operation modes of adsorption processes	11
1.3.3.1. Adsorption in agitated vessels (batch adsorption)	11
1.3.3.2. Fixed-bed adsorption (column adsorption)	11
1.3.4. Categorization of adsorbents	12
1.3.5. Categories of adsorption isotherms	14
1.3.6. Surface complexes	16
1.3.6.1. <i>Outer-sphere complex</i>	16
1.3.6.2. Inner-sphere complex	16
1.3.7. Transport and uptake of adsorbates	18
1.3.8. Adsorbent materials	18
1.3.9. Adsorbent selection	20
1.4. Polyacrylonitrile (PAN): properties and activation	22
1.4.1. Properties of PAN	22
1.4.2. Activation of PAN	24
1.4.2.1. Functionalization	24
1.4.2.2. Nitrile conversion	25
1.4.2.3. Copolymerization	26
1.4.2.4. Composite formation	27
1.5. Simultaneous removal of cationic and anionic	28
(radio)toxicants: past work	

CHAPTER II: Experimental 33 2.1. Reagents 2.2. Preparation of adsorbate solutions 34 34 2.3. The radionuclides 2.4. Apparatus 34 2.4.1. Distillator 34 **2.4.2.** *Balance* 34 2.4.3. pH meter 35 2.4.4. Magnetic stirrer 35 2.4.5. Thermostated shaker 35 35 2.4.6. Centrifuge 2.4.7. Spectrophotometer 35 2.4.8. Single-channel analyzer 36 2.5. Synthesis of adsorbents 36 2.5.1. Synthesis of PFICB 36 2.5.2. Synthesis of PAN/CB/KCuHCF 38 2.5.3. Synthesis of PAN 38 2.5.4. Synthesis of KCuFC 38 2.5.5. Synthesis of KCuHCF 40 2.6. Sample Characterization 40 **2.6.1.** Fourier-transformed infrared (FT-IR) 40 2.6.2. X-ray diffraction 41 **2.6.3.** Thermal analysis 41 2.6.4. Surface morphology 41 2.7. Adsorption experiments 41 2.7.1. Effect of reaction time 41 2.7.2. Effect of adsorbent mass 42 2.7.3. Effect of solution pH 43 2.7.4. Effect of Temperature 43 2.7.5. Effect of adsorbate initial concentration 43 2.7.6. Effect of foreign ions 44 2.8. Desorption studies 44 2.9. Analysis of (radio)toxicants 45 **2.9.1.** Radiometric analysis of ¹³⁴Cs(I) and ⁶⁰Co(II) 45 **2.9.2.** Spectrophotometric analysis of Cr(VI) and Mn(VII) 46

	Contents
2.9.2.1. Optimization of parameters	46
2.9.2.1.1. Effect of pH	46
2.9.2.1.2. Effect of ageing period	47
2.9.2.1.3. Effect of coexisting toxicants	47
2.9.2.2. Construction of the standard curve	51
2.9.2.3. General procedure of Cr(VI) and Mn(VII) determinate	ion 51
2.10. Data presentation	
CHAPTER III	
Synthesis of PAN/ferrocyanide composite incorporated with bromide and its employment as a bifunctional adsorbent for Cs^+ and $HCrO_4$ from aqueous solutions	
3.1. PFICB characterization	55
3.1.1. Fourier –transformed infrared(FT-IR) spectrometry	55
3.1.2. X-ray diffraction (XRD) analysis	55
3.1.3. Thermogravimertic (TGA) analysis	57
3.1.4. Scanning electron microscope (SEM) analysis	58
3.2. Optimization of adsorption parameters	58
3.2.1. Effect of reaction time	58
3.2.2. Fitting of kinetic data	64
3.2.3. Effect of adsorbent mass	69
3.2.4. Effect of solution pH	70
3.2.5. Effect of temperature	74
3.2.6. Effect of adsorbates concentrations	75
3.2.7. Fitting of adsorption isotherm	76
3.2.8. Effect of foreign ions	82

84

3.3. Desorption studies

CHAPTER IV

Efficient removal of radiocobalt and manganese from their binary aqueous solutions by batch adsorption process using

PAN/CB/KCuHCF composite

4.1. Characterization of PAN/CB/KCuHCF	
4.1.1. Fourier –transformed infrared(FT-IR) spectrometry	87
4.1.2. Thermogravimertic (TGA) analysis	88
4.1.3. X-ray diffraction (XRD) analysis	90
4.2. Optimization of adsorption parameters	91
4.2.1. Effect of solution pH	91
4.2.2. Effect of PAN/CB/KCuHCF dosage	94
4.2.3. Kinetic studies	95
4.2.4. Fitting of kinetic data	96
4.2.5. Thermodynamic studies	103
4.2.6. Equilibrium studies	106
4.2.7. Fitting of equilibrium isotherm data	106
4.3. Desorption studies	110
SUMMARY AND CONCLUSIONS	113
REFERENCES	124
ARARIC SUMMARY	j

List of Tables

Table No.	Table title	Page
Table 1:	Summary of the advantages and disadvantages of	7
	physico-chemical treatment processes.	
Table 2:	Summary of the advantages and disadvantages of	13
	batch and column operations.	
Table 3:	Pseudo-first-order and pseudo-second-order	66
	parameters for adsorption of Cs(I) onto PFICB at	
	different pHs and initial adsorbate concentrations.	
Table 4:	Pseudo-first-order and pseudo-second-order	67
	parameters for adsorption of Cr(VI) onto PFICB at	
	different pHs and initial adsorbate concentrations.	
Table 5:	Langmuir, Freundlich and Langmuir-Freundlich	79
	parameters for adsorption of Cs(I) and Cr(VI) onto	
	PFICB.	
Table 6:	Comparison of the Q_{max} of FPICB toward $Cs(I)$ cation	80
	and Cr(VI) anion with other adsorbents reported in	
	literature.	
Table 7:	Kinetic parameters for adsorption of manganese onto	102
	PAN/CB/KCuHCF composite.	
Table 8:	Thermodynamic parameters for adsorption of cobalt	105
	and manganese onto PAN/CB/KCuHCF composite.	
Table 9:	Isotherm parameters for adsorption of cobalt and	110
	manganese onto PAN/CB/KCuHCF composite.	

List of Figures

Figure No.	Figure caption	Page
Fig. 1:	Number of publications focused on adsorption of	8
	metal ions, dyes, and pharmaceuticals.	
Fig. 2:	Various mechanisms of sorption of an ion at solid-	10
	water interface.	
Fig. 3:	Operation modes of adsorption processes.	12
Fig. 4:	The four general categories of adsorption isotherms.	15
Fig. 5:	Diagrammatic illustration of inner-sphere and outer-	17
	sphere surface complexes.	
Fig. 6:	Activation routes of polyacrylonitrile (PAN).	23
Fig. 7:	Synthesis scheme of PFICB composite.	37
Fig. 8:	Synthesis scheme of PAN/CB/KCuHCF composite.	39
Fig. 9:	Spectra of 20 mg/L Cr(VI) at different pH values.	46
Fig. 10:	Spectra of 10 and 20 mg/L Mn(VII) at pH 3.	48
Fig. 11:	Spectra of 10 and 20 mg/L Mn(VII) at pH 5.	48
Fig. 12:	Spectra of 15 mg/L Cr(VI) at different ageing periods.	49
Fig. 13:	Spectra of 45 mg/L Mn(VII) at different ageing periods.	49
Fig. 14:	Spectra of 45 mg/L Mn(VII) in absence and in presence of Co(II).	50
Fig. 15:	Standard curve of Cr(VI) at pH ~ 12 and wavelength of 371 nm.	52
Fig. 16:	Standard curve of Mn(VII) at pH ~3.5 and wavelength of 524 nm.	52
Fig. 17:	FT-IR spectrograms of PAN, KCuFC and PFICB.	56
Fig. 18:	The XRD diffractograms of PAN, KCuFC and PFICB.	56
Fig. 19:	TGA of PAN, KCuFC and PFICB.	57
Fig. 20:	SEM micrograph of PAN.	59
Fig. 21:	SEM micrograph of KCuFC.	59
Fig. 22:	SEM micrograph of PFICB.	60

Fig. 23:	Effect of reaction time on the removal percentage of	61
	Cs(I) and Cr(VI) at different pH values.	
Fig. 24:	Effect of reaction time on the removal percentage of	61
	Cs(I) and Cr(VI) at various initial adsorbate	
	concentrations.	
Fig. 25:	Pseudo- first and pseudo-second order fittings for	62
	Cs(I) at different pH values.	
Fig. 26:	Pseudo- first and pseudo-second order fittings for	62
	Cr(VI) at different pH values.	
Fig. 27:	Pseudo- first and pseudo-second order fittings for	63
	Cs(I) at various Cs(I) Concentrations.	
Fig. 28:	Pseudo- first and Pseudo-second order fittings for	63
	Cr(VI) at various Cr(VI) Concentrations.	
Fig. 29:	Variation of the removal percentage and the adsorbed	70
	amount of Cs ⁺ and HCrO ₄ ⁻ with the mass of PFICB in	
	the range $1-20$ g/L at pH 3.4.	
Fig. 30:	The influence of the solution pH on the removal	71
	percentage of Cs(I) and Cr(VI) ions at different PFICB	
	dosages.	
Fig. 31:	The speciation diagram of Cs(I) and Cr(VI) using	72
	PHREEQC speciation software in the pH range of	
	1 - 12.	
Fig. 32:	Effect of temperature on the coremoval efficiency of	75
	Cs ⁺ and HCrO ₄ ⁻ at pH 3.5 using 10 g/L PFICB.	
Fig. 33:	The effect of initial concentrations of Cs ⁺ and HCrO ₄ ⁻	76
	ions on their removal percentages, at pH 3.5.	
Fig. 34:	Langmuir, Freundlich and Langmuir-Freundlich	77
	fittings of Cs(I) adsorption onto PFICB.	
Fig. 35:	Langmuir, Freundlich and Langmuir-Freundlich	77
	fittings of Cr(VI) adsorption onto PFICB.	0.2
Fig. 36:	Effect of foreign ions on the removal percentage of	83
D: 25	Cs ⁺ cations by PFICB composite.	0.4
Fig. 37:	Effect of foreign ions on the removal percentage of	83
	HCrO ₄ anions by PFICB composite.	