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Abstract
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Medical Images Classification Based on Ensemble Machine Learning
Methods

by Nada Sherif ABDEL GALIL EL-ASKary

Machine learning became a leading technology in all fields of life. In bioinformat-
ics, different techniques are used to learn a machine how to detect and classify
pathologies from digital medical images. These images could be of various types
such as Computed Tomography (CT) and X-ray. As for lung CT images, machine
learning can help radiologist to automatically detect lung nodules which can lead
to lung cancer in their early stages and with high accuracy. Lung nodule is an
abnormal growth in the lung. These nodules can be either benign (non-cancerous)
or malignant (cancer) and in this later case the patient is suffering from patholog-
ical lung. Early detection of lung nodule decreases the risk of advanced stages in
lung cancer disease and raises the possibility of saving precious human lives.
Random forest (RF), an ensemble machine learning algorithm, is used to detect
the lung nodules and classify soft-tissues into nodules and non-nodules. A lung
nodule classification approach is proposed to improve early detection for nodules
in addition to optimizing RF and reached lung nodule localization. A five stages
model has been built and tested using 214 cases from the LIDC database. Stage
1 is image acquisition and preprocessing. Stage 2 is extracting 119 features from
each pixel in the lung CT image. Stage 3 is refining feature vectors by removing all
duplicate instances and undersampling the non-nodule class. Stage 4 is tuning the
RF parameters. Stage 5 is examining different collections from the extracted fea-
ture sets to select those scores best for classification. The accuracy achievedby RF
is the highest compared to other machine learning classifiers such as KNN, SVM,
and DT. The proposed method aimed to analyze and select features that maxi-
mize classification results. Pixel based feature set and wavelet based set scored
best for higher accuracy. RF was tuned with 80 trees and 0.04 for in-bag-fraction.
Best results were achieved by the proposed model are 94.57%, 98% and 96.28%
for sensitivity, specificity, and accuracy respectively.
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