

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY
FACULTY OF COMPUTER &
INFORMATION SCIENCES
COMPUTER SCIENCE DEPARTMENT

Medical Image Classification based on Ensemble Machine learning Methods

A thesis submitted to the Department of Computer Science,
Faculty of Computer and Information Science, Ain Shams
University, in partial fulfillment of the requirements for the degree
of Master of Science in Computer and Information Science
By:

Nada Sherif Abdel Galil El Askary

Bachelor in Computer Science, Faculty of Computer and Information Science, Ain Shams University, Cairo, Egypt

Supervised By:

Prof. Dr. Mohamed Ismail Roushdy
Professor, Department of Computer Science
Faculty of Computers & Information Science
Ain Shams University

Dr. Mohammed A.-M. Salem
Associate Professor, Department of Scientific Computing
Faculty of Computer and Information Sciences
Ain Shams University
Faculty of Media Engineering and Technology
German University in Cairo

September 2020

Dedicated to my beloved father Sherif El Askary (Rahimahu Allah) who suffered alot from the cancer disease and passed away before seeing his daughter trying to find a solution to help him. . .

Declaration of Authorship

I, Nada Sherif ABDEL GALIL EL-ASKARY, declare that this thesis titled, 'Medical Images Classification Based on Ensemble Machine Learning Methods' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- □ Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- □ I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed: Nada Sherif Abdel Galil El-Askary	
Date: May2020	

"Who doesn't taste the bitter of Science 'education' an hour; he will sip the Humiliation of Ignorance all his life.."

Imam Shafi'i (Rahimahu Allah)

"Our greatest weakness lies in giving up. The most certain way to succeed is always to try just one more time."

Thomas A. Edison

"Successful and unsuccessful people do not vary greatly in their abilities. They vary in their desires to reach their potential."

John Maxwell

AIN SHAMS UNIVERSITY

Abstract

Faculty of Computer and Information Science
Computer Science Department

Master Degree of Science Thesis

Medical Images Classification Based on Ensemble Machine Learning Methods

by Nada Sherif ABDEL GALIL EL-ASKary

Machine learning became a leading technology in all fields of life. In bioinformatics, different techniques are used to learn a machine how to detect and classify pathologies from digital medical images. These images could be of various types such as Computed Tomography (CT) and X-ray. As for lung CT images, machine learning can help radiologist to automatically detect lung nodules which can lead to lung cancer in their early stages and with high accuracy. Lung nodule is an abnormal growth in the lung. These nodules can be either benign (non-cancerous) or malignant (cancer) and in this later case the patient is suffering from pathological lung. Early detection of lung nodule decreases the risk of advanced stages in lung cancer disease and raises the possibility of saving precious human lives. Random forest (RF), an ensemble machine learning algorithm, is used to detect the lung nodules and classify soft-tissues into nodules and non-nodules. A lung nodule classification approach is proposed to improve early detection for nodules in addition to optimizing RF and reached lung nodule localization. A five stages model has been built and tested using 214 cases from the LIDC database. Stage 1 is image acquisition and preprocessing. Stage 2 is extracting 119 features from each pixel in the lung CT image. Stage 3 is refining feature vectors by removing all duplicate instances and undersampling the non-nodule class. Stage 4 is tuning the RF parameters. Stage 5 is examining different collections from the extracted feature sets to select those scores best for classification. The accuracy achieved by RF is the highest compared to other machine learning classifiers such as KNN, SVM, and DT. The proposed method aimed to analyze and select features that maximize classification results. Pixel based feature set and wavelet based set scored best for higher accuracy. RF was tuned with 80 trees and 0.04 for in-bag-fraction. Best results were achieved by the proposed model are 94.57%, 98% and 96.28% for sensitivity, specificity, and accuracy respectively.

Acknowledgements

Thanks to God for leading me all the way though out my thesis journey.

Thanks to my supervisors; Prof. Dr. Mohamed Roushdy for guiding my to the right way and Dr. Mohammed Abd El Megeed for his endless knowleadge giving and advices for me to be more acheivable student. I would love also to thank Dr. Shereen Mousa for helping me in the publications processes.

Great thanks to my mother, my husband, my little children and all my family for supporting and being so kind to me while I was so depressed and frustrating.

Their encouragement gave me the push to continue.

Finally, I should also acknowledge the National Cancer Institute and the Foundation for the National Institutes of Health, and their critical role in the creation of the free publicly available LIDC/IDRI Database used in this study. . .

Contents

1	Inti	oduct	ion		1
	1.1	Motiv	ation		1
	1.2	Proble	em staten	nent	2
	1.3				3
	1.4	•			
2	Machine Learning for Medical Image Classification				
	2.1	Backg	round		5
		2.1.1	Artificia	l Intelligence	6
		2.1.2	Machine	Learning	7
		2.1.3	Deep Lo	earning	8
		2.1.4	Data Sc	ience	9
		2.1.5	Types o	f Learning	9
				2.1.5.1 Supervised learning	_
			2.1.5.2	Unsupervised learning	
			2.1.5.3	Semi-supervised learning	
			2.1.5.4	Reinforcement Learning	
		2.1.6	Machin	e Learning in Medical Applications	11
		2.1.7	Ensemb	le Methods for Classifying Medical Images	. 11
	2.2	Litera	ture Revie	ew	. 12
		2.2.1	Previous	work	. 12
		2.2.2	Datasets	3	13
			2.2.2.1	Computed Tomography (CT) Images	. 14
			2.2.2.2	Other Types of Lung Datasets	17
		2.2.3	Preproc	essing and Segmentation	17
		2.2.4	Feature	Extraction and Reduction	20
			2.2.4.1	Intensity Based Features	. 20
			2.2.4.2	Texture based features derived from Gray level Co-	
				occurrence Matrix	22
			2.2.4.3	Texture based features derived from Gray Level	
				Run Length matrix	24

		2.2.4.4 Texture based features derived from 2D and 3D	
		gradient	25
		2.2.4.5 List of Common Shape Based Features	•
		(Region Properties)	
		2.2.4.6 List of Other Used Features	
		2.2.4.7 Feature Reduction	28
		2.2.5 Lung Nodule Detection and Classification	
		Methods	
		2.2.5.1 Using K-Nearest Neighbor Models	
		2.2.5.2 Using Bayesian Classifier	
		2.2.5.3 Using Support Vector Machine	
		2.2.5.4 Using Random Forest	
		2.2.5.5 Using Deep Learning Methods	
		2.2.5.6 Using Other Models	37
	2.3	Discussion	39
3		ndom Forest	43
	3.1	Decision trees	
		3.2 Baggin	_
	3.3	Random selection of features	
	3.4	Random forest	
	3.5	RF algorithm steps	46
	3.6	Parameters for RF algorithm	47
	3.7	RF real life applications	48
	3.8	Advantages of using RF	48
4	T	Nodel Classification with Dandam Found	5 0
4		ng Nodule Classification using Random Forest	50
	4.1	Introduction	
	4.2	Stage 1: Image acquisition & Pre-processing	
	4.3	Stage 2: Features Extraction	
	4.4	Stage 3: Feature Matrix Cleaning and Balancing	
	4.5	Stage 4: Tuning RF parameters	
	4.6	Stage 5: Classification using RF	
		4.6.1 Feature reduction	
		4.6.1.1 PCA	
		4.6.1.2 Dividing Features to Common Sets	
		4.6.2 Classification	65
5	Res	ults and Discussions	66
	5.1	Experimental environment	66
	5.2	LIDC Dataset	
	5.3	Results and Discussions	
		5.3.1 Phase 1	68
		5 3 2 Phase 2	71

Cor	nclusion and Future work	•
6.1	Summary	
6.2	Conclusion	
6.3	Future work	

List of Figures

	Traditional programming vs. ML	/
2.2	Abstract block diagram for lung nodule dection models	
2.3	Some samples from different used datasets	14
2.4	Sample output from some methods	19
2.5	Flow chart for method reduces the false positive rate using SVM	32
2.6	Flow chart for method used DCT filters	35
2.7	Flow chart for Two level NN for lung cells classification	36
2.8	Flow Chart for a lung nodule detection module	38
3.1	Bagging	
3.2	Simplified Random Forest	46
4.1	Block diagram for the propsed 5 stages model	51
4.2	A sample tiff image from the LIDC dataset, with nodule pointed with the arrow	52
4.3	The left image is a sample for a lung CT image that has nodule very attached to the lung wall, marked with red circle. Then the right image is after disconnecting the nodule from the lung wall	
5.1	Chart explains rate of changing the accuracy by changing the size percentage of testing. Experiment environment was 64 trees, 0.01 in-bag-fraction (Phase 1)	68
5.2	Chart explains rate of changing accuracy by changing the value of in-bag-fraction in the RF. Experiment environment was 64 trees, 20% of the data set for testing (Phase 1)	69
5.3	Chart explains the rate of changing the accuracy by changing the number of trees in the RF. 0.007 used for the in-bag-fraction, 20% of data for testing (Phase 1).	
5.4	Rate of changing accuracy by changing the value of the in-bag-	07
	fraction. Number of trees used are 50 trees (Phase 2)	72
5.5	Rate of changing accuracy by changing number of trees in the forest. In-bag-fraction is set to 0.04 (Phase 2).	72
5.6	Comparison between the accuracy achieved in phase 1 and accuracy achieved in phase 2 for each feature set	

List of Tables

2.1	List of researches used LIDC-IDRI dataset in their studies	15
2.2	List of Intensity based features.	20
2.3	List of Texture based features derived from GLCM	22
2.4	List of Texture based features derived from Gray Level Run Length	
	matrix	24
2.5	List of 2D and 3D gradient based features	25
2.6	List of common Shape based features (region properties)	26
2.7	List of other used features	28
2.8	Summary on results of presented researches and methods	39
4.1	List of used features	54
4.2	Dividing features list into Sets according to the type or family they descend from	
5.1	Sets of features divided based on their types and families	70
5.2	Results in phase 1 using different feature sets	
5.3	Comparing RF model phase 1 with other machine learner classifiers	71
5.4	Results in phase 2 from different feature sets	73
5.5	Comparison between results from previous work and proposed work using same environment for comparison fairness. Note that number of trees and in-bag-fraction changed from the those used in table 5.4	74
5.6	and so results changed Comparing proposed model with other models that uses RF for	/4
5.0	classification and detection	74

List of Publications and Submissions

List of published work

- Nada S. El-Askary, Mohammed A.-M. Salem, and Mohamed I. Roushdy, "Lung Nodule Detection and Classification using Random Forest: A Review", In Proceedings of the 2019 9th International Conference on Intelligent Computing and Information Systems (ICICIS '19), Cairo, Egypt, 2019, pp. 105-111, doi: 10.1109/ICICIS46948.2019.9014706.
- Nada S. El-Askary, Mohammed A.-M. Salem, and Mohamed I. Roushdy. "Feature Extraction and Analysis for Lung Nodule Classification using Random Forest", In Proceedings of the 2019, 8th International Conference on Software and Information Engineering (ICSIE '19), Cairo, Egypt, 2019. ACM pp. 248–252. DOI:https://doi.org/10.1145/3328833.3328872

List of submitted work to international journal

 Nada S. El-Askary, Mohammed A.-M. Salem, and Mohamed I. Roushdy, "Features processing for Random Forest optimization in lung nodule localization" 2019