

Database Establishment of Ketogenic Diet Clinic in Ain Shams University Children's Hospital

Thesis

Submitted for Partial Fulfillment of Master Degree in **Pediatrics**

By

Wafaa Mostafa Abdelwahab Shokair M.B.B.Ch, Ain Shams University (2009)

Under Supervision of

Prof. Omnia Fathy Elrashidy

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof. May Fouad Nassar

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Yasmin Gamal Abdo El-Gendy

Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Omnia Fathy Elrashidy**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. May Found Massar**, Professor of Pediatrics, Faculty of Medicine, Ain
Shams University, for her sincere efforts, fruitful
encouragement.

I am deeply thankful to **Dr. Uasmin Gamal Abdo El-Gendy**, Lecturer of Pediatrics, Faculty of Medicine, Ain
Shams University, for her great help, outstanding support,
active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

I would like to thank our patients and their families and my colleagues who helped us in this study

Wafaa Mostafa Abdelwahab Shokair

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	vii
Introduction	1 -
Aim of the Work	4
Review of Literature	
Nutrition Clinic Information Program	5
Ketogenic Diet	19
Epilepsy	43
patients and Methods	65
Results	7 8
Discussion	108
Summary	118
Conclusion	122
Recommendations	123
References	124
Appendices	I
Arabic summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Epilepsy syndromes and some in which the KD therapies reported probable benefit	has been
Table (2):	Epilepsy syndromes and some in which the KD therapies reported possible benefit	has been
Table (3):	Absolute contraindications for t KD therapies.	
Table (4):	Relative contraindications for to KD therapies.	
Table (5):	Laboratory evaluations	36
Table (6):	Side effects of Ketogenic diet	42
Table (7):	Changes in seizure type classification 1981 to 2017	
Table (8):	Electroclinical syndromes are epilepsies	nd other51
Table (9):	A proposed diagnostic scheme to with epileptic seizures and with e	
Table (10):	Efficacy spectrum of currently antiepileptic drugs (AEDS)	
Table (11):	Factors to be considered in the sean antiepileptic durg	
Table (12):	Demographic data of the sex mode of delivery, gestation consanguinity and postnatal hist studied patients:	nal age, ory of the

Table (13):	Description of the age of onset of convulsions	. 83
Table (14):	Description of types of seizures among patients	. 84
Table (15):	Description of duration of KD	. 85
Table (16):	Comparison of weight, height, BMI, Z score for weight, Z score for height, Z score for BMI before and after KD.	. 85
Table (17):	Initial and follow up values of cholesterol, high density lipoproteins (HDL), low density lipoproteins (LDL) and triglycerides	. 88
Table (18):	Description of acetone and random blood sugar in the study patient	. 89
Table (19):	Diagnosis of the patient at presentation	.90
Table (20):	Demographic data of family history the studied patients and demography of the patients at October 2019	.92
Table (21):	The number of patients regularly following up in ketoclinic since its start in 2013 till 2019	.93
Table (22):	Description of Compliance of the KD patients.	.95
Table (23):	Description of the patient still following or stopped KD and their compliance.	.96
Table (24):	The compliance pattern of the patients during the last 6 years:	.98
Table (25):	Frequency of complications of KD among patients	100

Table (26):	Comparison between the adaptive behavior of our patients before and after KD by using vineland test
Table (27):	Comparison between the adaptive behavior of our patients before and after KD by using vineland test
Table (28):	Comparison of the frequency of convulsions before KD and after 3 months, 6 months, 12 months, 24 months and 36 months of KD 104
Table (29):	Comparison of severity of seizure according to Chalfont Score before and after KD

Tist of Figures

Fig. No.	Title	Page No.
Figure (1):	Description of Patient data (name and code number)	
Figure (2):	Description of Patient present histo	ory10
Figure (3):	Description of Patient medical data	a11
Figure (4):	Description of patient medicomplains)	
Figure (5):	Description of patient medical file history)	-
Figure (6):	Description of patient medical file history)	-
Figure (7):	Description of patient medical laboratory investigations and image	
Figure (8): D	Description of Patient statistical repo	rt16
Figure (9):	Description of Patient statistical re	port17
Figure (10):	Description of Patient statistical re	eport18
Figure (11):	Formation of ketone bodies	20
Figure (12):	Structure of GABA	22
Figure 13:	Metabolic modifications of gluta GABA synthesis	
Figure 14:	Potential pathways through polyunsaturated fatty acids (PUF limit hyperexcitability in the brain	FAs) may
Figure 15:	ILAE classification of seizurexpanded form	• •
Figure 16:	Framework for classification of the	epilepsies50

Figure 17:	General principles in the pharmacological treatment of epilepsy60
Figure 18:	Description of the sex of the patients79
Figure 19:	Description of the address of the patients79
Figure 20:	Description of the mode of delivery of the patients80
Figure 21:	Description of the gestational age of the patients80
Figure 22:	Description of the consanguinity of the patients81
Figure 23:	Description of the post natal history of the patients81
Figure 24:	Description of the family history of the patients
Figure 25:	Description of the age of onset of convulsions:
Figure 26:	Description of types of seizures among patients
Figure 27:	Comparison of weight before and after KD 86
Figure 28:	Comparison of height before and after KD 86
Figure 29:	Comparison of Z score for weight, before and after KD
Figure 30:	Comparison of Z score for height before and after KD87
Figure 31:	Initial and follow up values of cholesterol, high density lipoproteins (HDL), low density lipoproteins (LDL) and triglycerides.
Figure 32:	The diagnosis of the patient at presentation 91

Figure 33:	Demography of the patients in 201992
Figure 34:	The number of patients regularly following up in ketoclinic since its start in 2013 till 2019:
Figure 35:	Description of the rate of change of patients number from 2013 till now
Figure 36:	Description of the total patients' compliance
Figure 37:	Description of the patient still following or stopped KD and their compliance96
Figure 38:	Comparison between pateints stopped KD and still on KD regarding compliance97
Figure 39:	Description of the percentage of compliance of patients from 2013 till 201999
Figure 40:	Frequency of GIT and Urinary complications
Figure 41:	Frequency of Dietetic complications of KD among patients
Figure 42:	Comparison between the adaptive function of our patients before and after KD by using vineland test
Figure 43:	Comparison of the frequency of convulsions before KD and after 3 months, 6 months, 12 months, 24 months and 36 months of KD 105
Figure 44:	Comparison of severity of seizure according to Chalfont Score before and after KD 107

Tist of Abbreviations

Abb.	Full term
AA	Arachidonic acid
ADEAF	Autosomal dominant epilepsy with auditory
	features
<i>ADNFLE</i>	\dots Autosomal-dominant nocturnal frontal lobe
	epilepsy
<i>AE</i>	Adverse events
<i>AED</i>	Antiepileptic drug
BDH1	BHB dehydrogenase
<i>BECTS</i>	Benign epilepsy with centrotemporal spikes
<i>BFNE</i>	Benign familial neonatal epilepsy
<i>BHB</i>	Beta – hydroxy- Butarate
BMI	Body mass index
BNS	Benign neonatal seizures
<i>CAE</i>	Childhood absence epilepsy
<i>CPT</i>	Carnitine palmitoyl ltransferase
CSWS	Continuous spike-and-wave during sleep
<i>DHA</i>	Docosahexanoic acid
<i>EEG</i>	Electroence phalogram
<i>EME</i>	Early myoclonic encephalopathy
ESES	Electrical Status Epilepticus in Sleep
FIRES	Febrile infection–related epilepsy syndrome
FS	Febrile seizures
<i>FS</i> +	Febrile seizures plus
<i>GA</i>	Gestational age
<i>GABA</i>	Gamma-amino butyric acid
<i>GI</i>	Glycemic index
GLUT-1	Glucose Transporter Protein 1

Tist of Abbreviations cont...

Abb.	Full term
Glut1DS	Glucose transporter protein 1 (Glut-1) deficiency syndrome
<i>GSH</i>	Glut athione
<i>HMG-CoA</i>	3-hydroxy-3-methylglutaryl CoA
ICIDH-2	International Classification of Functioning, Disability and Health
<i>ILAE</i>	International League against Epilepsy
JAE	Juvenile absence epilepsy
<i>JME</i>	Juvenile myoclonic epilepsy
<i>KD</i>	Ketogenic Diet
LCAD	Long-chain acyl dehydrogenase deficiency
	Low glycemic index treatment
<i>LKS</i>	Landau-Kleffner syndrome
	Low and middle-income countries
<i>MAD</i>	Modified Atkins diet
MCAD	Medium-chain acyl dehydrogenase deficiency
<i>MCT</i>	Medium-chain triglyceride
<i>MEG</i>	Magneto-encephalography
MEI	Myoclonic epilepsy in infancy
MRI	Magnetic resonance image
MTLE with HS	Mesial temporal lobe epilepsy with
	$hippocampal\ sclerosis$
<i>NAD</i> +	$ Nicotina mide\ adenine\ dinucleotide$
<i>NE</i>	No repine phrine
<i>NPY</i>	$ Neuropeptide ext{-}Y$
<i>NS</i>	Non significant
PDH	Pyruvate dehydrogenase

Tist of Abbreviations cont...

Abb.	Full term
DDIID	D
	Pyruvate dehydrogenase deficiency
<i>PME</i>	Progressive myoclonus epilepsies
PUFAs	Polyunsaturated fatty acids
ROS	Reactive oxygen species
S	Significant
SANAD	Standard versus New Antiepileptic Drugs
SCAD	Short-chain acyl dehydrogenase deficiency
SRS	Stereotactic radio-surgery
SSPE	Subacute sclerosing panencephalitis
UCPs	Uncoupling proteins
VNS	Vagus nerve stimulation

Introduction

pilepsy is a disorder that occur in about 1% of population and the onset of epilepsy in 60% of cases start in childhood (*Armeno et al.*, 2014).

Epidemiological data indicate that 20-30% of patient will become refractory to therapy. Refractory epilepsy is defined as seizures that cannot be controlled with at least two first line antiepileptic drugs in adequate doses, as single or combined drug therapy (*Freeman et al.*, 2007).

The ketogenic diet, a non-drug treatment had proven its effectiveness in treatment of epilepsy in children in the past decade especially in management of refractory epilepsy. The ketogenic diet is highly effective and reduce the incidence of seizures by 50% in a half of patient, and 90% in one third of patients (*Lee and Kossoff, 2011*).

The ketogenic diet is a high fat, low carbohydrate, adequate protein diet that cause ketosis and leads to metabolic state that resemble the fasting state (*Neal et al.*, 2008). It works through multiple mechanisms that target a specific biochemical pathways linked to cell substrate (e.g, ion channel) and mediators responsible for neuronal hyperexcitability. It is also thought that the ketone bodies have direct anticonvulsant effect (*Rho and Neuroscil*, 2015).

The classical ketogenic diet is considered the treatment of choice for patient with a glucose transporter protein type 1 (GLUT1) deficiency or a pyruvate dehydrogenase (PDH) deficiency (Nangia, 2012).

Its use in Egypt has been started since 2011and full publication on 2013 (El-Rashidy et al., 2013).

It is also important to exclude clinical condition for which the ketogenic diet is contraindicated (e.g, disorder of fatty acid oxidation, disorder of fatty acid transport, pyruvate carboxylase deficiency and porphyria) and assess risk factors that may complicate the use of ketogenic diet (e.g., gastroesophageal reflux (Kossoff et al., 2009).

The more common complications are metabolic acidosis and gastrointestinal manifestations, such as abdominal pain, nausea and vomiting with a risk of dehydration and hypoglycemia especially in patients who remain fasting for an extended period of time. Less common, but very important, effects because of their difficult management include eating disorders, such as loss of appetite, fluid rejection, and selfinduced vomiting (Ballaban et al., 1998).

The ketogenic diet is a meal plan with an unbalanced intake of micro- and macronutrients; it may result in energy, protein, mineral and vitamin deficiency and excessive lipid intake, with a risk of unwanted side effects. However, its