

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

MAXIMUM UTILIZATION OF KARKADE IN FOOD PROCESSING

By

WALAA MOHAMED AHMED EI-SAYED

B.Sc. Agric. Sc. (Food Technology), Fac. of Agric., Ain Shams Univ. (2007) M.Sc. Agric. Sc. (Food Sci. & Tech.), Fac. of Agric., Ain Shams Univ. (2014)

A Thesis Submitted in Partial Fulfillment
Of
the Requirement for the Degree of

in
Agricultural Sciences
(Food Science and Technology)

Department of Food Science
Faculty of Agriculture
Ain Shams University

Approval Sheet

MAXIMUM UTILIZATION OF KARKADE IN FOOD PROCESSING

By

WALAA MOHAMED AHMED EI-SAYED

B.Sc. Agric. Sc. (Food Technology), Fac. of Agric., Ain Shams Univ. (2007) M.Sc. Agric. Sc. (Food Sci. & Tech.), Fac. of Agric., Ain Shams Univ. (2014)

This thesis for PhD. degree has been approved by:

Date of Examination: 15/8/2020

Dr. Mohamed I. M. Ibrahim Prof. of Food Science and Technology, Faculty of Agriculture Cairo, Al-Azhar University. Dr. Hesham M. A. Al Hariri Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University. Dr. Mohamed, M. Mostafa Khlaf Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University. Dr. Mamdouh, H. El-Kalyoubi Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University.

MAXIMUM UTILIZATION OF KARKADE IN FOOD PROCESSING

By

WALAA MOHAMED AHMED EI-SAYED

B.Sc. Agric. Sc. (Food Technology), Fac. of Agric., Ain Shams Univ., (2007) M.Sc. Agric. Sc. (Food Sci. & Tech.), Fac. of Agric., Ain Shams Univ. (2014)

Under the supervision of:

Dr. Mamdouh, H.O. El-Kalyoubi

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

Dr. Mohamed, M. Mostafa Khlaf

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. Salwa Mohamed Amin Farghal

Researcher Professor of Food Science and Technology, Plant Production Dep., Desert Research Center.

ABSTRACT

Walaa Mohamed Ahmed El-Sayed: Maximum Utilization of Karkade in Food Processing. Unpublished PhD., Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2020.

Roselle or karkade (Hibiscus sabdariffa L.) were analyzed for its chemical and nutritional characteristics of plant parts (seeds, leaves, stems and roots). The effect of the replacement of wheat flour with roselle seeds cake powder (0, 10, 20 and 30%) or roselle leaves powder (0, 2.5, 5 and 7.5%) on the nutritional quality properties of biscuits was studied. Also, the effect of the replacement of soybean flour with roselle seeds powder (0, 25, 50, 75 and 100%) on the nutritional quality properties of beef burger, either before storage or after 15, 30, 60 and 90 days of freezing storage was studied. The obtained results proved that roselle seed, cake and leaves is a rich source of valuable nutrients, i.e., protein (12.32 – 29.06%), lipids (4.45 – 27.83%), ash (5.53 - 15.13%) and crude fiber (14.52 - 20.53%) as well as higher content of essential minerals. Potassium, calcium and phosphorus were recorded the highest concentrations in roselle parts, they ranged between 7.94 - 46.30 mg/g (potassium), 5.29 - 28.80 mg/g (calcium) and 3.23 - 22.10 mg/g (phosphorus). Total phenolic compounds ranged between 155.04 - 3288.33 ppm as gallic acid, so it was the highest in roselle leaves being 3288.33 ppm followed by stems (2086.78 ppm); therefore roselle plant could be used as natural antioxidant. The oxidation stability measured by the induction period at 100°c using rancimat operates of sunflower supplemented with different ratios of roselle seeds was measured. The results showed that, roselle seeds oil had relatively high stability and increased oxidation stability of sunflower oil with increasing the ratios of roselle seeds oil. The replacement of roselle seeds cake or leaves powder in biscuit formula improved the nutritional profile and physical characteristics of biscuits. Increasing the replacement of roselle seeds cake or leaves powder, increased the nutritive value of prepared biscuits. Sensory evaluation revealed that the best replacement ratio was 10% of roselle cake and 2.5% of roselle leaves

which gave suitable attributes for panelists and scored the highest level of biscuit quality. Fortification of roselle cake powder in beef burger improved the nutritional profile and cooking characteristics of beef burgers. Sensory evaluation showed that the best replacement ratio was 100% of roselle seeds cake which gave suitable attributes for panelists which scored the highest level of beef burger quality and increased their acceptability during storage. However, increasing the replacement of roselle cake powder, increased the nutritive value, quality and stability of prepared beef burger. The antioxidant effect of roselle cake powder that kept and protect beef burger against fats degradation by oxidation. Roselle could be became an excellent economic and valuable source of the nutritional factors which can be used in food supplementation. Roselle seeds and cake could be considered a good source of protein and can replaced animal protein, especially for vegetarians.

Key Words: Roselle, proximate composition, nutritional value, mineral, phenolic compounds, biscuits, beef burger, antioxidant effect, sensory evaluation, fat peroxidation.

CONTENTS

CONTENTS.	page
LIST OF TABLES	vi
LIST OF ABBREVIATIONS	ix
INTRODUCTION	1
REVIEW OF LITERATURE	5
2.1. Karkade plant (Hibiscus sabdariffa L.)	5
2.2. Chemical composition of different organs of roselle	6
2.2.1. Chemical composition of roselle seeds	6
2.2.2. Chemical composition of roselle leaves	9
2.2.3. Chemical composition of roselle calyces	9
2.3. Minerals composition of roselle seeds and leaves	10
2.4. Amino acid composition of roselle seeds	12
2.5. Phenolic compounds of roselle seeds	13
2.6. Physicochemical properties of roselle seeds oils	15
2.7. Fatty acid composition of roselle seed oil	17
2.8. Oxidative stability of roselle seed oil	20
2.9. Functional properties of roselle seeds	21
2.10. Different uses of roselle plant in food industry	21
2.10.1. Uses of roselle seeds in bakery products	28
2.10.2. Uses of roselle seed oil	30
2.10.3. Other uses	31
2.10.3.1. Antioxidant efficacy	31
2.10.3.2. Medicinal Uses	33
MATERIALS AND METHODS	37
3.1. Materials	37
3.1.1. Plant samples	37
3.1.2. Ingredients	37
3.1.2.1. Ingredients of beef burger	37
3.1.2.2. Ingredients of biscuit	37
3.1.2.3. Chemicals	37
3.2. Methods	37

3.2.1. Preparation of plant samples	37
3.2.1.1. Preparation of roselle seeds	37
3.2.1.2. Preparation of roselle stems or leaves	38
3.2.1.3. Preparation of roselle seeds oil	38
3.2.1.4. Extraction sunflower oil	39
3.2.2. Technological application	39
3.2.2.1. Preparation of sunflower oil blending with roselle	
seeds oil	39
3.2.2.2. Preparation of biscuit	39
3.2.2.3. Preparation of beef burger	41
3.2.3. Analytical Methods	42
3.2.3.1. Proximate composition	42
3.2.3.2. Minerals composition	42
3.2.3.3. Acidity and peroxide value	43
3.2.3.4. Anisidine values (AV)	43
3.2.3.5. Total oxidation (TOTOX) values	43
3.2.3.6. Ultra-Violet absorption	43
3.2.3.7. Determination of total phenols Content	43
3.2.3.8. Gas-liquid chromatographic analysis of fatty acids	44
3.2.3.9. Determination of amino acids for roselle seeds	45
3.2.3.10. Functional properties of protein	45
3.2.3.10.1. Water and oil absorption	45
3.2.3.10.2. Foam capacity and stability	45
3.2.3.11. Oxidative stability	46
3.2.3.12. Physical analysis of prepared biscuit samples	46
3.2.3.12.1. The specific volume	46
3.2.3.12.2. Spread factor	46
3.2.312.3. Hardness	47
3.2.3.13. Physical analysis of prepared beef burger samples.	47
3.2.3.13.1. Cooking yield and cooking loss	47
3.2.3.13.2. Change of beef burger diameter (Shrinkage)	47
3.2.3.13.3. Water holding capacity (WHC)	48

3.2.3.14. Sensory evaluation
3.2.3.14.1. Sensory evaluation of biscuit samples
3.2.3.14.2. Sensory evaluation of beef burger samples
3.2.3.15. Statistical analysis
RESULT AND DISCUSSION
4.1. Approximate analysis of roselle plant
4.1.1. Chemical composition analysis of different organs of roselle plant
4.1.2. Mineral composition of different organs of roselle
plant
4.1.3. Phenolic content in different organs of roselle plant
4.1.4. Functional properties of roselle seeds, seeds cake and
leaves
4.1.5. Amino acids profiles of roselle seeds
4.1.6. Fatty acid composition of roselle seeds oil
4.1.7. Physicochemical properties of roselle seeds oil
extracted with different methods
4.2. The effect of blending sunflower oil with roselle seeds
oil on autoxidation
4.3. Application of roselle seeds cake or leaves in biscuits
4.3.1. Proximate composition
4.3.1.1. Proximate composition of biscuits as affected by
partial replacement of wheat flour with roselle
seeds cake
4.3.1.2. Proximate composition of biscuits as affected by
partial replacement of wheat flour with roselle
leaves
4.3.2. Minerals composition
4.3.2.1. Macronutrients composition of biscuits as affected
partial replacement of wheat flour with roselle
seeds cake
secus care

4.3.2.2. Macronutrients composition of biscuits as affected	
by partial replacement of wheat flour with roselle	
leaves	78
4.3.2.3. Micronutrients composition of biscuits as affected	
by partial replacement of wheat flour with roselle	
seeds cake	80
4.3.2.4. Micronutrients composition of biscuits as affected	
by partial replacement of wheat flour with roselle	
leaves	82
4.3.3. Physical characteristics	84
4.3.3.1. Physical properties of biscuits as affected by partial	
replacement of wheat flour with roselle seeds cake	84
4.3.3.2. Physical properties of biscuits as affected by partial	
replacement of wheat flour with roselle leaves	87
4.3.4. Sensory characteristics of produced biscuits	91
4.3.4.1. Sensory characteristics of biscuits as affected by	
partial replacement of wheat flour with roselle	
seeds cake	91
4.3.4.2. Sensory characteristics of biscuits as affected by	
partial replacement of wheat flour with roselle	
leaves	95
4.4. Application of roselle seeds cake in beef burger	99
4.4.1. Proximate composition of beef burger produced by	
partial replacement of soybean with roselle seeds	
cake	99
4.4.2. Fat stability	102
4.4.3. Cooking characteristics of beef burger produced by	
different ratios of soybean with roselle seeds cake	107
4.4.4. Sensory characteristics of tested beef burger samples	
during freeze storage	113