

بسم الله الرحمن الرحيم

-Cardon - Cardon - Ca

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

بعض الوثائق

الأصلية تالفة

بالرسالة صفحات

لم ترد بالأصل

ZAGAZIG UNIVERSITY SHOUBRA FACULITY OF ENGINEERING

ASSESSMENT OF MECHANICAL PROPERTIES OF WELDED JOINTS OF DISSIMILAR METALS USING STAINLESS STEELS AND CARBON STEELS.

A THESIS

Submitted in Partial Fulfillment for the Degree of Master of Science in Mechanical Production Engineering

BY

ENG. IBRAHIM SOLIMAN IBRAHIM SOLIMAN B. Sc. MECH. PRODUCTION ENGINEERING Dep. of Material Safety and Fuel Cycle. NCNSRC Atomic Energy Authority

SUPERVISED BY

Prof. Dr. T. A. KHALIFA
Mech.Eng. Dept. Shoubra Faculty of Eng.

Prof.Dr.M.M.GHQNF Atomic Energy Authority

Assoc.Prof.Dr.M.A.SHAFY Atomic Energy Authority Dr. A. M. EL SHERIEF Atomic Energy Authority

EXAMINATION COMMITTEE

Prof. Dr. T. A. F. KHALIFAMechanical Engineering Department
University of Zagazig (Shoubra)

Tarek Khalifa

Prof. Dr. M. M. GHONEIM

Metallurgy Department Atomic Energy Authority M. eghaneim

M.E.Abh

Prof. Dr. M. E. ABD- EL- AZIM

Metallurgy Department Atomic Energy Authority

Assist. Prof. Dr. A. M. NASER-ELDIN

Metallurgy Department Atomic Energy Authority

ACKNOWLEDGMENT

I would like to express my gratitude and appreciation to my supervisor Prof. Dr. T.A.Khalifa, the mechanical engineering department, Faculty of Engineering at Shoubra, Zagazig University, for his supervision and his many valuable suggestions and discussions and guidance during the course of the work presented in this thesis.

Great appreciation is due to Prof. Dr.M.M.Ghoneim, the metallurgy department, Atomic Energy Authority, for his fruitful discussions and guidance during the course of the work presented in this thesis.

I wish to express my deep appreciation and sincere gratitude to Dr. M.A.Shafy, head of quality assurance department, Atomic Energy Authority, for his continuous supervision, valuable suggestion, and effective contribution of this study.

I would like to thank Dr.A.M.EL.Sherief, quality assurance department, Atomic Energy Authority for help during preparation of this work.

My deep thanks and sincere gratitude are due to Prof. Dr.K.El-Adhem and Prof. Dr.G.A.Araby, material safety and Fuel Cycles, department, for their continuous help, support, and guidance throughout the work.

I wish to express my deep appreciation and sincere gratitude to Dr.A.M.Nasr.Eldin, metallurgy department, Atomic Energy Authority, for his continuous supervision, valuable suggestion, and effective contribution of this study.

I also would like to extend my thanks to Dr. A.A. Gadalla, material safety and fuel cycle dep., for his encouragement and help.

Last but not least, I wish to extend my very warm gratitude to my parents and my wife, who made it possible for me, completes this work..

ABSTRACT

The purpose of this work is to evaluate the microstructure and mechanical properties of dissimilar weld joints, using austentic stainless steel electrodes types E308L& E309L, to join C-Mn Steel type 17MN4, DIN 17155. This steel is used in nuclear industries as a boiler tubes plates. Also, a ferritic steel electrode type AWS E7018 has been used in order to compare similar and dissimilar weld joints. Welding of specimens was conducted using shielded metal arc welding process (SMAW).

Tensile and Charpy-V impact properties were determined at ambient temperature for the weld joints in the as-welded condition and after aging at 580°C for 2, 10, 50 and 100 hours. Also were measured the ferrite number of weld deposits for E308 and E309 in the as-welded condition. In addition, Vickeres microhardness profiles across the fusion line were measured in as-welded condition, and for 2hr and 100hr at 580°C. Optical and scanning electron microscopy were used to characterize the microstructure and fracture surface morphology. The results showed that the C-Mn Steel is very sensitive for stress relief and care should be taken to select the proper time of PWHT. Acicular ferrite which is the predominant structure of the 7018 weld metal exhibited higher impact energy after 2hrs PWHT. The tendency of martensite formation at the fusion line between HAZ and weld Metal is higher in E308 than in E309. In addition, long period of PWHT at 580°C showed that the E309L weld metal is susceptible to form higher carbides than the E308L.

CONTENTS

ACKNOWLE	DCMENT	Page i
ABSTRACT		ii
CONTENTES		
CHAPTER I	INTRODUCTION	1
CHAPTER 2	LITRETURE SERVEY	3
2.1	General	
2.1.1	Carbon Manganese Steel	3
2.2	Mechanical Properties of Ferritic-Pearltic	6
	Microstructure	
2.3	Fracture of Welded Joints	10
2.4	Weldability of Carbon Manganese Steels	10
2.4.1	Heat Treatment of Weldment of Carbon	13
	Manganese Steel	
2.4.2	Post Weld Heat Treating	13
2.4.3	Effect of Alloying Element on Microstructure and Mechanical Properties of C-Mn Steel Weldments	17
2.4.3.1	Effect of Manganese	17
2.4.3.2	Influence of Mn, and Ni on the Microstructure and Toughness of C-Mn-Ni Weld Metal	20
2.4.3.3	Effect of Carbon	21
2.4.3.4	Effect of Aluminum	21
2.4.3.4	Effect of Nitrogen, Titanium, and Boron	22
2.5	Effect of Welding Pramter in the Weldability of C-Mn Steel	22
2.5.1	Effect of Welding Position	22
2.5.2	Effect of Interpass Temperature	23
2.5.3	Effect of Electrode diameter	25
2.5.4	Effect of Heat-Input	25
2.6	Dissimilar Metal Weldsof Stainless Steel	26
2.6.1	Problems in Dissimilar Steels Joints	26
2.6.1.1	Carbon Migration	27
2.6.1.2	Factors Affecting Carbon Migration	27
6.1.3	Methods to Counteract Carbon Migration	28
2.6.1.4	Dilution	29

2.6.1.5	Coefficient of Thermal Expansion	32
2.6.1.6	Thermal Conductivity	35
2.6.1.7	Melting Point	37
2.6.2	Problems Arising During Welding	37
	Austentic/Ferritic joints	
2.7	Selection of Filler Metal for Dissimilar Metal	38
	Joint	
2.8	Study of the Martensite Structure at the Weld	40
	Interface and the Fracture Toughness of	
	Dissimilar Metal Joint	
2.9	Microstructure and Mechanical Property	41
	Relationships in Dissimilar Welds Between	
	Duplex Stainless Steels	
2.10	Effect of Welding Parameter on Hard Zone	42
	Formation Dissimilar Metal Welds	
2.11	Stainless Steels	43
2.11.1	General	43
2.11.2	Ferritic Stainless Steels	44
2.11.3	MartensiticStainless Steels	44
2.11.4	Precipitation Hardening Stainless Steels	44
2.11.5	Austenitic Stainless Steels	45
2.12	Heat Treatment of Austenitic Stainless Steels	48
2.13	Welding of Austenitic Stainless Steels	48
2.14	Measuring of Ferrite Number	51
2.15	Other Phases in Austenitic Stainless Steels	54
CHAPTER 3	EXPERIMENTAL WORK	
3.1	Introduction	57
3.2	Materials	57
3.3	Preparation and Testing Specimens	58
3.3.1	Welded Specimens	58
3.3.2	Filler Metal characteristics	59
3.3.3	Metallographic Examination	60
3.3.4	X-Ray Radiography	61
3.3.5	Heat Treatment	61
3.4	Weld Deposit	61
3.4.1	Measurement of Ferrite Number	61
3.5	Mechanical Testing	62
3.5.1	Impact Tests	62
3.5.2	Tensile Tests	63
3.5.3	Micro-Hardness Tests	63

CHAPTER 4 RESULTS

4.1	Microstructure	68
4.1.1	C-Mn Steel	68
4.1.2	Similar Metal Welds 7018/C-Mn Steel	68
	Combinations	00
4.1.3	Dissimilar Metal Welds 309L/C-Mn Steel and	74
	308L/C-Mn Seel Combinations	, ,
4.1.6	Measuring of Ferrite Number of Weld Deposit	88
	308L and 309L	00
4.2	Tensile Results	88
4.3	Hardness Results	100
4.4	Impact Results	100
4.4.1	Fracture Surface Examination	111
4.4.1.1	C-Mn Steel	111
4.4.1.2	Fracture Surface Examinations Similar Metal	111
	Welds 7018/C-Mn Steel Combinations	, , ,
4.4.1.3	Fracture Surface Examinations Dissimilar	121
	Metal Welds	141
CHAPTER 5	DISCUSSIONS	
5.1	C-Mn Steel	124
5.2	Similar Metal Welds 7018/C-Mn Steel	124
	Combination	120
5.3	Dissimilar Metal Welds	131
5.3.1	Microstructure of Weld Zone	131
5.3.2	Microstructure of Fusion Line and HAZ	131
5.3.3	Mechanical Properties	135
	Topoldob	133
СНАРТЕВ 6	CONCLUSIONS	
CHALLER O	CONCLUSIONS	139
REFERENCES		140

CHAPTER 1

INTRODUCTION

Dissimilar metal joints are widely used in many applications in nuclear engineering, chemical, petrochemical, and fossil-fired power plants. This type is also used for superheated, reheated tubes, headers, and hot reheat steam pipes. However, the elevated temperature usually makes austenitic stainless steel the necessary choice. The application of the dissimilar metal joints is not only to satisfy the different requirements of various condition, such as heat resistance, and corrosion resistance, but may also to save of novel and expensive materials, used in some application. There are even cases for which there is no choice other than to join dissimilar metals is usually more complex than joining of dissimilar metals together in a single product for meet the design requirements. Welding of dissimilar metals is usually more complex than joining of similar metals. In addition, dissimilar metal weldments are characterized by compositional gradients and microstructure changes, which produce large variation in physical, and mechanical properties across the weldment.

When welding austentic-ferritic dissimilar steel joints, the major problems encountered are:

1-Due to different in the chemical composition of base metal and filler metal, their alloying elements will diffuse intensily during welding. The structures near the fusion line are very complex. A hard martensite

layer will be formed at the weld interface, which could cause the heterogeneity of mechanical properties of the joints.

- 2-The mismatch of physical properties, such as the heat transfer coefficient and the thermal expansion coefficient, could induce thermal stresses at the weld interface.
- 3-Dilution of the weld metal, carbon migration near the fusion lines, formation of martensitic transition zone across the fusion line between the weld metal and the ferritic steel.
- 4-When the joints are used at elevated temperature, carbonized and decarbonized zones will occurs, which could affect the high temperature properties.

In the present work these previous problems of the dissimilar, similar metal welds using the simple welding technique (SMAW) have been investigated. The mechanical properties and microstructure of dissimilar and similar metal welds for stainless steel electrodes E308, E309, and ferritic steels electrode E7018 to welded carbon manganese steels have been studied.

The present work contains 6 chapters, introduction, literature survey, experimental, results, discussions, and conclusions.

CHAPTER 2

LITERATURE SURVEY

2-1 General

2-1-1 Carbon Manganese Steel

Carbon manganese steel is a term applied for steel containing up to 1.70-% max. carbon, 2% manganese and 0.60% max. silicon. The carbon range for most of the structural grades of steel is 0.15-0.29 %C (mild steel) with Mn up to 1.65%. As rolled plates of this steel provide yield strengths in the range of (256-462MPa), and are defined in appropriate ASTM specifications (such as ASTM A36, A441 and A572). Steel in this carbon range can also be furnished in the heattreated condition to provide yield strengths up to 710 MPa along with excellent notch toughness [1]. These steels are generally produced as plates with arc welding being the primary method of fabrication. Manganese is added to all commercial steels in the range of 0.025 to 1.00 percent to deoxidize it and combine with the sulfur present in the steel to produce manganese sulfide (MnS) which exists as soft gray inclusions in the steel. The MnS inclusions are scattered at the grain boundaries and are elongated in the direction of working. MnS is preferable to iron sulfide (FeS) in the steel since (FeS) is a brittle, lowmelting temperature compound which forms at grain boundaries. The effect of manganese in strengthening plain-carbon steels can be divided into the following three parts: solid-solution hardening, grains size