

Ain Shams University Faculty of Science Physics Department

Study of New Polymeric/Ilmenite Composites as Shields for Neutron Sources

A Thesis

Submitted to Ain Shams University for the degree of Doctor of Philosophy in Physics

By

Wageeh Sayed Ahmed Ramadan

M.Sc. in Physics, Ain Shams University, 2016

Supervisors

Prof. Dr. Nabil Ali El-Faramawy

Prof. of Nuclear and Radiation Physics
Physics Department
Faculty of Science
Ain Shams University

Prof. Dr. Khaled Sakr

Prof. of Materials Engineering Radiation Protection Department Hot Laboratories Centre Atomic Energy Authority

Prof. Dr. Magda Salah

Prof. of Radiation Chemistry Radiation Protection Department Hot Laboratories Centre Atomic Energy Authority

Ain Shams University Faculty of Science Physics Department

Title: Study of New Polymeric/Ilmenite Composites as Shields for Neutron Sources

Name: Wageeh Sayed Ahmed Ramadan

Degree: Doctor of Philosophy in Physics

<u>Supervisors</u>	<u>Signature</u>
Prof. Dr. Nabil Ali El-Faramawy Prof. of Nuclear and Radiation Physics Physics Department Faculty of Science Ain Shams University	••••••
Prof. Dr. Khaled Sakr Prof. of Materials Engineering Radiation Protection Department Hot Laboratories Centre Atomic Energy Authority	
Prof. Dr. Magda Salah Prof. of Radiation Chemistry Radiation Protection Department Hot Laboratories Centre Atomic Energy Authority	•••••

Ain Shams University Faculty of Science **Physics Department**

Name: Wageeh Sayed Ahmed Ramadan Title: Study of New Polymeric/Ilmenite Composites as Shields for Neutron Sources **Degree:** Doctor of Philosophy in Physics **Signature Supervisors** Prof. Dr. Nabil Ali El-Faramawy Prof. of Nuclear and Radiation Physics, Physics Department Faculty of Science, Ain Shams University Prof. Dr. Khaled Sakr Prof. of Materials Engineering, Radiation Protection Department Hot Laboratories Centre, Atomic Energy Authority Prof. Dr. Magda Salah Prof. of Radiation Chemistry, Radiation Protection Department Hot Laboratories Centre, Atomic Energy Authority **Examining Committee** Signature Prof. Dr. Huda Mohammed Essa Prof. of Radiation Physics, National Institute of Standards Prof. Dr. Jeffrey S. Nico National Institute of Standard and Technology, Gaithersburg, USA Prof. Dr. Nabil Ali El-Faramawy Prof. of Nuclear and Radiation Physics, Physics Department Faculty of Science, Ain Shams University

Approval Stamp Date of Approval / 2020 / 2020 **Approval of University Council Approval of Faculty Council** / 2020 / / / 2020

Thanks to Allah The Merciful, For my success in completing this work.

Dedication

For All My Loving Family;

My Father of the deceased and My Mother,

My Brothers and My Sister,

My Wife and My Sons; Anas and Malek

Acknowledgement

I wish to express my sincere thanks and gratitude to my team of supervisors.

I have the pleasure to express my deep gratitude *Prof. Dr. Nabil El-Faramawy*, Professor of Nuclear and Radiation Physics at Physics Department, Faculty of Science, Ain Shams University for, his supervision, honest guidance, continuous encouragement, and trustful help through the experimentation and writing the manuscript.

I would like to thank with gratitude *Prof. Dr. Khaled Sakr*, Professor of Materials Engineering at Hot Laboratories Center, Atomic Energy Authority, for his kind supervision and encouragement, guidance throughout the present work, and useful discussion about this work.

I would like to thank *Prof. Dr. Magda Salah*, Professor of Radiation Chemistry at Hot Laboratories Center, Atomic Energy Authority, for her advice in supervising encouragement and her valuable help in practical applications.

I wish to express my deep thanks to *Prof. Dr. Nabila Maziad*, Professor of Polymer Chemistry at Atomic Energy Authority for her advice, generous assistance and continuous helpful discussions.

I wish to express my gratitude to *Prof. Dr. Moustafa Aziz*, Nuclear and Radiological Regulatory Authority for his guidance at the MCNP-code modeling. I would like to thank *Prof. Dr. Wagdy Kansouh*, Nuclear Research Center, Atomic Energy Authority for his valuable hints, and help throughout radiation attenuation measurements and results analysis.

i

Aim of work

The work aims to obtain a high-quality neutron radiation-shielding material that has characteristics of lightweight, cheap, and easy to prepare.

The attenuation parameters were evaluated experimental and calculated theoretically by MCNP5 simulation and the Win XCOM program for gamma-rays.

Abstract

This thesis is concerned with the investigation of the physical, thermomechanical, and radiation attenuation properties of some shielding materials. Selected shields of Acrylamide, Acrylic acid, and Polyvinyl Alcohol hydrogel composites were chosen to fulfill certain applications and are concerned for the present work. Both hydrogels (Acrylamide, Acrylic acid, and Polyvinyl Alcohol) were filled with ilmenite and as well as, boric acid for homogeneous shields. In general, polymeric substances are hydro carbonic substances which guarantee good neutron moderation and attenuation. Furthermore, ilmenite was employed for gamma-rays attenuation.

Any material used for shielding purposes should fulfill some design criterion which includes physical and thermomechanical proficiency beside their main role as nuclear radiations attenuator. Therefore, physical properties as density, water absorption, and porosity were tested. Also, thermomechanical analysis as a linear thermal expansion and glass transition was performed to monitor the usefulness of the composites as radiation shields.

Radiation attenuation properties have been carried out using different thicknesses of the investigated composite samples vary from 3 to 18 cm and collimated radiation beams emitted from radioactive Pu-α- Be (5 Ci) neutron source. Fast neutron and gamma-ray spectra were measured by a neutron-gamma spectrometer with a stilbene organic scintillator based on the zero crossover method of the Pulse Shape Discrimination (PSD) technique. This technique was used to

discriminate against undesired pulses of recoil protons or electrons due to neutrons and gamma rays respectively.

The measured results of fast neutrons and total gamma rays are presented in the form of displayed spectra (energy distribution) for the different thicknesses of the investigated composites. These relations were used to derive the macroscopic effective removal cross-section Σ_R , total attenuation coefficient μ of fast neutrons, and gamma-rays respectively. Also, half-value layers (HVL) and relaxation lengths (λ) have been evaluated for the concerned composites.

MCNP5 code was used to calculate the macroscopic effective removal cross-section Σ_R of fast neutrons and attenuation coefficient μ of gamma-rays. Also, the WinXCom program was used to calculate the attenuation coefficient μ of gamma-rays. The obtained results showed that the AAc/B-IIm composite gives the best results for all the investigated properties. Generally, considering the ilmenite's advantages is based principally on the attenuation of gamma-rays that have good value for a total attenuation (μ). Besides, the simulated results for gel-type composites at the selected energies were generally in good agreement with experimental results.

Keywords; Neutron source, Radiation shielding, Ilmenite, Hydrogel, Linear thermal expansion, Glass transition.

Contents

	Page No
Acknowledgement	i
Aim of work	ii
Abstract	iii
List of tables	X
List of figures	xiv
List of abbreviations	xix
Chapter (1) Theoretical Aspects	
1.1. Discovery of neutron	1
1.2. Gamma-rays sources	2
1.2.1. Reactor gamma-rays	2
1.2.1.1. Prompt-fission gamma photons	2
1.2.1.2. Fission-product gamma photons	3
1.2.1.3. Activation gamma photons	3
1.2.2. Gamma-rays from other sources	4
1.2.2.1. Radiative capture gamma photons	4
1.2.2.2. Inelastic scattering gamma-rays	5
1.2.2.3. Bremsstrahlung	5
1.3. Neutron sources	6
1.3.1. Neutrons produced from cosmic-ray particles	6
1.3.2. Spontaneous-fission neutron sources	6
1 3 3 Neutrons from uranium fission	7