

Three Dimensional Modelling Using Terrestrial Laser Scanner Data, with Applications on Water Structures

Prepared by

Eng. Huda Abd El.fattah Abd El.salam Amer

Assistant researcher at National Water Research Center Faculty of Engineering, Ain Shams University In partial fulfillment of the Requirements for the Degree of

Doctor OF Philosophy In

PUBLIC WORKS

Under the Supervision of

Prof. Dr.Ibrahim Fathy Shaker

Professor of Surveying and Photogrammetry Public works Department- Faculty of engineering Ain Shams University, Cairo, EGYPT

Prof. Dr. Ayman Fouad Ragab

Professor of Surveying and Photogrammetry Public Work Department-Faculty of Engineering Ain Shams University, Cairo, EGYPT

Prof. Dr. Ahmed Khedr Abel-Gawad

Professor of Civil Engineering Civil Engineering Department - Engineering Research Division National Research Centre, Cairo, EGYPT

Dr. Yasser Mostafa Megahd

Associate Professor of Surveying and Geodesy Public Work Department-Faculty of Engineering Ain Shams University, Cairo, EGYPT

> CAIRO – EGYPT 2020

Three Dimensional Modelling Using Terrestrial Laser Scanner Data, with Applications on Water Structures

A Thesis

Submitted to Faculty of Engineering
Ain Shams University in Fulfillment of the Requirement for Ph.D. Degree in
Civil Engineering
(Surveying)

Prepared by Eng. Huda Abd El.fattah Abd El.salam Amer

M.Sc. in Civil Engineering, May 2010 Faculty of Engineering, Cairo University

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Saad Mohamed Bolbol	
Professor of Surveying and Geodesy	
Faculty of Engineering-Shoubra-Benha University	
Prof.Dr. Maarouf Ahmed Diefallah	
Professor of Surveying and Photogrammetry	• • • • • • • • • • •
Faculty of engineering- Ain Shams University	
Prof. Dr. Ibrahim Fathy Shaker	
Professor of Surveying and Photogrammetry	• • • • • • • • • •
Faculty of engineering- Ain Shams University	
	· · · · · · · · · · · · · · · · · · ·

Date:/ 2020

DEDICATION

To the one who may be absent in body, but present in all our spirits. To the one who gifted me knowledge and integrity. To the one whose legacy is an overflow of virtuous deeds, to my root and stem, my father; may god rest his soul in piece.

To my beloved mother, the river of warmth and care, the cradle of life, the start, and end point of our lives, to the one who gifted me love, life, hope.

To my dear sisters, Hagar and Sarah

To my dear brothers, Wael, Mohamed, Hesham, and Sameh

To my angels, Ahmed, Hala, Malik, and Layla

I present you this simple, humble work.

Ain Shams University - Faculty of Engineering

Public Works department

Researcher data

Name: Huda Abd El.fattah Abd El.salam Amer

Date of Birth: 30/11/1979

Place of Birth: United Kingdom

Academic Degree: M.Sc. in Civil Engineering

Field of Specialization: Public works department – (Surveying)

University Issued the Cairo University

Degree:

Date Issued the Degree: May, 2010

Current Job: Assistant Researcher at National Water

Research Center

Date:/ 2020

Statement

The dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Public Works Ain Shams University from June 2012 to April 2020.

No part of this thesis has been submitted for a degree or a qualification of any other University Institution.

Date: / /2020

Name: Huda Abd El.fattah Abd El.salam Amer

Signature:

Abstract

At the last decade, the terrestrial laser scanning technique became a suitable alternative to create a 3D model for any object instead of the (image-based technique). This suitability is related to different factors; simplicity, high progress of data acquisition, and direct recovering of interest points on the object without more measurements or processing. Although the TLS is recommended as a highly accurate instrument which is adequate for various applications, maintaining high accuracy of acquired huge data in the presence of some errors (instrumental, object-related, environmental, methodological, and scanning geometry) is a major challenge.

Therefore, the **main objective** of this research work is the investigation of the sources which could be controlled, these sources are;

- Scanning geometry which is the orientation (angle and range) of the object related to the scanner.
- Methodological errors which includes; the chosen registration or geo-referencing techniques, survey method, used soft wares and user experience.

The applied **work methodology** was depending on; the accuracy assessments of the output product whether they are point clouds or models to fulfil the required objective. In this context; two experiments (Outdoor and Indoor) were implemented using two designed calibrated targets to evaluate the geometric accuracy of the distances on the scanned targets under different geometric conditions. On the other side, the registration and geo-

referencing techniques, surveying planning, choices of the suitable programs and the user experience was investigated through two different 3D modelling applications (small statue and large water structure).

The **concluded results** show that; the orientation of the object is affecting the accuracy of the output point clouds measurements with in 7m range. All the RMSE are ranging from 0.8mm to 2mm with orientation angles from 0° to 50°. For the long distances, the results were different. The scanning accuracy is directly decreased with the increase of used orientation angle; the RMSE value was nearly 10mm. Through the implementation of two different applications, different techniques of registration and geo-referencing were applied and various programs were used. For both applications, the Trimple Realworks adopted better result than the Scene software from the point of view of accuracy, simplicity, and organization. The Geomagic software was preferable than the Trimple Realworks based on the specialized modelling capabilities for the modelling of Three-dimensional irregular objects (small statue). The Trimple Realworks is suitable for the modelling of the systematic engineering applications (barrage). The accuracy assessment of the created 3D model of the Indoor application (small statue) obtained a result of (1.2 mm) total RMSE. On the other side, the accuracy assessment of the created 3D model of the Barrage obtained a result of 10.94mm total RMSE.

Keywords: TLS - Scanning geometry - Methodological sources - RMSE

Acknowledgements

Foremost, all praise goes to the almighty **Allah**, the sustainer who has been showering His endless blessings on me throughout my life.

First of all, I would like to express my sincere thanks and special gratitude to **Prof. Dr Ibrahim F.M.Shaker** for his supervision, continuous encouragement, and valuable advice during all stages of this research; for the many hours of his valuable time which he spent on aiding me.

I also wish to express my deepest appreciation and grateful thanks to **Prof. Dr Ayman Fouad Ragab** for his kind supervision and careful guidance, and his unlimited help and support throughout the whole study period.

My deepest and unlimited gratitude to my supervisor **Prof. Dr Ahmed Khedr Abel-Gawad** for his continuous encouragement and immediate solutions to any of the complicated problems related to this research. As well as providing his valuable time spent in revising the manuscript of this thesis.

My special thanks are also extended to **Dr Yasser M. Megahd** for his continuous help, assistance, encouragement, and advice throughout my studies.

Furthermore, Advice given by **Prof Dr. Shaban Abou-Hussein**, National Research Centre, has been a great help in the preparation and publication of the research papers.

The technical information of the used Instrument and programs provided by **Eng. Ahmed H. Ibrahim** the senior sales engineer at Zamil Steel & Owner of CSS contracting was greatly appreciated.

I am particularly grateful for the technical writing assistance and technical problems solving given by **Eng.Hesham A. Amer** the senior civil engineer at Khatib & Alami.

I would like to offer my special thanks to **Mr Ahmed Elwahsh** for his valuable assistance in the lingual aspect of the research.

I am greatly indebted to **Eng. A. Abdelmaabod and Eng.Moaman**, Demonstrators at Faculty of Engineering, Ain Shams University for their appreciated help and support during the research period.

Table of Contents

Statement	V
Abstract	VI
Acknowledgement	VIII
Table of Contents	X
List of Figures.	XVI
List of Tables	XXI
Chapter 1: Introduction	1
1.1. General	2
1.2 Research Questions	3
1.3. Research Objectives	4
1.4. Important Terminologies	4
1.5. Thesis Outlines	6
Chapter 2: Background of 3D Modelling using Laser Scanner	7
2.1. Laser Scanner Versus Photogrammetry	8
2.2. Previous Studies on Laser Scanner Errors	11
2.3 Applications of Laser Scanner	17
2.4 Range Based Technique (Laser Scanning)	23
2.4.1 Surveying Principles of (Terrestrial Laser Scanner) TLS	23
2.4.2 Scanning Methods:	27
2.4.2.1Triangulation based measurements	27
2.4.2.2. Time of flight systems	29
2.5. Sources of Errors in TLS	33
2.5.1.Instrumental Errors:	34
2.5.1.1. Errors in the laser rangefinder	34
2.5.2.2. Errors in the beam deflection unit and angle measurement system	135

2.5.2.3. Laser beam divergence.	30
2.5.2.4. Axes errors in the TLS	36
2.5.2. Object-Related Errors:	38
2.5.3 Environmental Errors	41
2.5.3.1. Laser beam propagation in the atmosphere	41
2.5.3.2. Errors caused by the influence of the atmospheric conditions	42
2.5.3.3. Influence of adverse weather conditions on TLS measurements	43
2.5.3.4. Interfering radiation	44
2.5.3.5. Errors caused by the scanner instability During the Survey	
and vibration	44
2.5.4 Scanning Geometry	45
2.5.4.1. The incidence angle	45
2.5.4.2. The range	47
2.5.4.2. The range Chapter 3: Practical Preparation of Indoor and Outdoor Experiments.	
	48
Chapter 3: Practical Preparation of Indoor and Outdoor Experiments.	48
Chapter 3: Practical Preparation of Indoor and Outdoor Experiments. 3.1.Introduction	49
Chapter 3: Practical Preparation of Indoor and Outdoor Experiments. 3.1.Introduction	49 50
Chapter 3: Practical Preparation of Indoor and Outdoor Experiments. 3.1.Introduction	48505051
Chapter 3: Practical Preparation of Indoor and Outdoor Experiments. 3.1.Introduction	
Chapter 3: Practical Preparation of Indoor and Outdoor Experiments. 3.1.Introduction	
Chapter 3: Practical Preparation of Indoor and Outdoor Experiments. 3.1.Introduction	
Chapter 3: Practical Preparation of Indoor and Outdoor Experiments. 3.1.Introduction	
Chapter 3: Practical Preparation of Indoor and Outdoor Experiments. 3.1.Introduction	

3.5.1.1. Indoor experiments squared target (small)	56
3.5.1.2. Outdoor experiments target	58
3.6. Criteria of Investigating Methodological Errors Applications	61
3.6.1 Working Circumstances for Both Applications	62
Chapter 4: Accuracy Assessment of TX5 Geometric Planning Parame	ters64
4.1. Introduction	65
4.2. The Indoor Experimental Work	65
4.2.1 Presentation and Analysis of Obtained Results	75
4.3. The Outdoor fieldwork implementation:	76
4.3.1. Analysis of the Obtained Results:	81
Chapter 5: Indoor Application (3D Modelling of Small Statue)	83
5.1 General	84
5.2 Work Preparation	86
5.2.1 The Object	86
5.2.2 The Used Instruments	86
5.2.3The Used Software	87
5.2.4Working Environment:	87
5.3 Scanning:	87
5.4 The Processing	90
5.4.1 Registration Process:	90
5.4.2 Registration by Scene	91
5.4.2.1. Registration using spheres	91
5.4.2.2. Registration using planes	94
5.4.3. Registration by Trimple Realworks:	96
5.5. Modelling Process:	97
5.5.1. Modelling with Trimple Realworks	97

5.5.2. Modelling with Geomagic Warp 2017	102
5.5.3. Modelling Process Evaluation	107
5.6. Accuracy Assessment of the TLS Measurements (Verifica	ation) 108
Chapter 6: Outdoor Application (3D modelling of the Barrage)	113
6.1 General	114
6.1.1The Barrage/Regulators Evaluation	114
6.2 Work Preparation	117
6.2.1 The Scanning Object:	117
6.2.2 The Used Instruments and Software:	118
6.2.3 Working Environment and Obstacles:	119
6.3 Field Works:	121
6.3.1 Ground Surveying:	121
6.3.2 Scanning Process:	123
6.4 Point Clouds Processing:	124
6.4.1Point Clouds Registration:	125
6.4.2 Modelling by Trimple Real Work:	128
6.5 Accuracy Assessment of the T.L.S measurements:	131
6.5.1. Using Check Points:	131
6.5.2. Using Ground Surveying:	132
Chapter 7: Conclusions and Recomndations	136
7.1 Summery	137
7.2 Conclusions	138
7.3 Recommendations	143
References:	144
Annendix A: Scanning Parameters	168

Appendix B: The Measurements of the Observed Distances and the Residuals in Case of Indoor Experiment17	
Appendix C: TLS Manufactures and Processing Software	205
C.1. Companies	206
C.1.1 Faro:	206
C.1.2. Leica Geosystems:	206
C.1.3. Riegl Laser Measurement Systems (LMS):	207
C.1.4. Trimble	208
C.1.5. Zoller + Frohlich GmbH :	209
C.2. Classification of Processing Software Packages	211
Appendix D: Processing Criteria	221
D.1 Registration:	222
D.2.1 Target-Based Registration	223
D.2.2. Target-Less Registration	225
D.3. Registration Algorithms	225
D.3.1. Principal Component Analysis (PCA) Algorithm	226
D.3.2. Singular Value Decomposition Algorithm	227
D.3.3. Iterative Closest Point	228
D.4 Geo-referencing	229
D.4.1 Direct Geo-referencing	230
D.4.2. Indirect Geo-referencing	231
D.4.2.1 Two-Step (Indirect geo-referencing)	231
D.4.2.2.One-step (Indirect geo-referencing)	232
Appendix E: Registration Report (Camel statue)	233
Appendix F: Registration Report (Barrage)	239

Appendix G: Total Station Report of the Ground Control Points	
••••••	252
Appendix H: Accuracy Assessment of 3D Modelling Applications	262
الملخص	