

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

"Assessment of Efficacy of Photoactivated Disinfection versus Calcium Hydroxide Disinfection in Regeneration of Immature Infected Teeth"

(A comparative in vivo study)

Thesis

Submitted to the Faculty of Dentistry - Ain Shams University for Partial Fulfillment of the Requirements for Master's degree in **Endodontics**

By

Kholoud Mohamed Emam

B.D.S. – Faculty of Dentistry, Misr International University, (2012)

Faculty of Dentistry
Ain Shams University
2020

SUPERVISORS

Prof. Dr. Kariem El-Batouty

Professor of Endodontics and Vice Dean,
Faculty of Dentistry
Ain Shams University

Dr. Mohammed Mokhtar Nagy

Assistant Professor of Endodontics,
Faculty of Dentistry
Ain Shams University

Acknowledgement

First and foremost, thanks to **ALLAH** the Most Gracious and the Most Merciful for giving me the strength, knowledge, ability and opportunity to undertake this research study and to complete it satisfactorily. Without his blessings, this achievement would not have been possible.

I would like to express my deepest gratitude and appreciation to my thesis supervisor **Prof. Kariem El-Batouty**, Professor of Endodontics, Faculty of Dentistry, Ain Shams University for his extreme heartfelt support, time and effort. Without his passionate help and guidance this study could not have been successfully conducted. It has been a great honor to work under his supervision.

I owe a deep sense of gratitude to **Dr. Mohamed Mokhtar Nagy**, Assistant professor at endodontic department, Faculty of Dentistry, Ain Shams University, for his dedication and keen interest above all his overwhelming attitude to help his students has been mainly responsible for completing my work.

I deeply thank all the staff members of the endodontic department, Ain Shams University for their kind help and cooperation throughout my study period.

My special thanks to my second home, the Endodontic Department at Future University in Egypt. I must express my deepest gratitude to my doctors and friends at Future University in Egypt for their continuous love and encouragement.

Last, but not least, my acknowledgement wouldn't be complete without thanking the biggest source of my strength, my family and my husband. Their blessings always showed me the way to the right path.

Kholoud Mohamed Emam

Dedication

I would like to dedicate this work to **my beloved family**

who always believed in me. I would not have been where I am today without their continuous encouragement and love.

I would like to thank

my father, mother and my sisters

with all my heart and I know they are always sending me their blessings constantly. I hope I can always make you proud of what I am achieving in my life.

And last but not least, I would like to thank **my beloved husband**

for his continuous support, I wouldn't have completed my work without his help and encouragement.

LIST OF CONTENTS

	Page
LIST OF TABLES	II
LIST OF FIGURES	III
INTRODUCTION	1
REVIEW OF LITERATURE	3
AIM OF THE STUDY	22
MATERIALS & METHODS	23
RESULTS	36
DISCUSSION	53
SUMMARY AND CONCLUSIONS	62
RECOMMENDATIONS	65
REFERENCES	66
ARABIC SUMMARY	-

LIST OF TABLES

Table no.	Title	Page
1	Percentage change of root length for different groups at different follow up periods	39
2	The total mean, standard deviation (SD) values of increase in root length of different groups	39
3	Percentage change of root thickness for different groups at different follow-up periods	44
4	The total mean, standard deviation (SD) values of increase in root diameter of different groups	44
5	Percentage change of apical diameter for different groups at different follow up periods	49
6	The total mean, standard deviation (SD) values of decrease in apical diameter of different groups	49

LIST OF FIGURES

Figure no.	Title	Page
1	Photograph showing diode laser	23
2	Photograph showing injectable calcium hydroxide paste	24
3	Photograph showing MTA	24
4	Photograph showing the 1 st page of the informed consent	32
5	Photograph showing the 2 nd page of the informed consent	33
6	Photograph showing digital measurement of root length in pre-operative (1) and postoperative (2) radiographs using Image J software	34
7	Photograph showing digital measurement of root thickness at the apical third in preoperative (1-2) and post-operative (3-4) radiographs using Image J software	34
8	Photograph showing digital measurement of the apical diameter in pre-operative (1) and post-operative (2) radiographs using Image J software	35
9	Bar chart showing average percentage change of root length for different follow up periods within different groups	40
10	Bar chart showing average percentage change of root length for different groups within different follow up intervals	40
11	Bar chart showing average percentage change of root thickness for different subgroups	45

Figure no.	Title	Page
12	Bar chart showing average percentage change of root thickness for different groups within different follow-up intervals	45
13	Bar chart showing average percentage change of apical diameter for different groups	50
14	Bar chart showing average percentage change of apical diameter for different groups within different follow up intervals	50
15	Radiograph showing representative case of group I (calcium hydroxide)	51
16	Radiograph showing representative case of group II (Diode laser) and group III (calcium hydroxide+ diode laser)	52

INTRODUCTION

Treatment of immature teeth with necrotic pulp is considered a challenge to a dentist. **First,** disinfection of these canals is very difficult since the use of aggressive instrumentation will lead to further weakening of the already thin root and will eventually lead to root fracture.

Second, obturating these canals is very difficult because the wide apex provides no apical stop for root filling material before invading the periodontal tissues.

Due to the previous challenges, historically apexification was introduced, its aim is the formation of a calcific barrier at the root terminus most often made of cementum like tissues, however due to the week root formed, several cases of fracture were reported after apexification.

MTA apexification was then introduced offering the option of a twovisit apexification procedure so that the fragile tooth can be restored immediately, however this treatment does not enhance the root length and thickness.

Recently, regenerative endodontics was suggested. Regeneration is a biologically based procedures designed to replace damaged structures such as dentin, root structure and cells of the pulp-dentine complex by using stem cells, scaffolds and growth factors.

Regenerative procedure depends mainly on disinfection rather than instrumentation. The most commonly used intra canal medicaments are calcium hydroxide and triple antibiotic paste that consist of metronidazole,

ciprofloxacin and minocycline). The minocycline was reported to make discoloration, so it was removed from the paste, and the paste was called double antibiotic paste.

Calcium hydroxide was considered a goal standard material for several decades due to its high alkalinity giving it excellent antibacterial properties also causing initial necrosis followed by repair and hard tissue formation.

Although intracanal medicaments have high antibacterial effect, it didn't provide the satisfactory disinfection. These materials depend on direct contact of the agent with the microbes so they cannot reach areas where bacteria are hidden, most of these materials lose their action after 24 hours and some of them cause toxicity.

Recently, new approaches are introduced for augmenting canal disinfection including photo activated disinfection. Many researches proved that laser was capable of not only smear layer removal and intra canal disinfection but also periapical disinfection.

REVIEW OF LITERATURE

Regeneration is a biologically based alternative approach that is used to treat immature teeth with necrotic pulp that allows continuation of root development, which leads to apical closure and strengthening of the root structure (2).

I. Regeneration as a treatment modality:

Regeneration is directly depending on the race between bacterial infection of the necrotic pulp and revascularization of the canal space by vital tissue using the ischemic pulp as a matrix.

In infected immature teeth, the potential for revascularization has been thought to be lost because mechanical instrumentation and irrigation with sodium hypochlorite has been proven to be ineffective in root canal disinfection¹. However, Intracanal medicaments play an important role in eradication of bacteria.

Calcium hydroxide has been widely used in regenerative endodontics as it possesses many of the properties of an ideal root canal dressing, acting as a physical barrier, preventing root canal reinfection and interrupting the nutrient supply to the remaining bacteria. It also has ability to form hard-tissue barrier.

Calcium hydroxide effectiveness in disinfection is attributed to its ability to make the environment alkaline, which prevents bacterial multiplication.

Ca(OH)₂ has the advantage of being compatible with the survival of the stem cells of the apical papilla (SCAP), thus allowing their proliferation. A recent study showed that TAP, double antibiotic paste (DAP), and modified TAP in different concentrations reduced the survival of stem cells. On the other hand, Ca(OH)₂, even in high concentrations, maintained the viability of stem cells ⁽²⁾.

Cotti et al., 2008⁽³⁾ reported a case of a necrotic immature permanent central incisor using a regenerative approach. The root canal was gently debrided of necrotic tissue with a sharp spoon excavator and irrigated for only one third of its length with NaOCl and then medicated with calcium hydroxide. After 15 days the tooth was asymptomatic, calcium hydroxide was removed, bleeding was stimulated to form an intracanal blood clot, and mineral trioxide aggregate was placed coronally to the blood clot. After 8 months, a coronal calcified barrier was radiographically evident accompanied with progressive thickening of the root wall and apical closure. Two and a half years after treatment was initiated, the tooth remained asymptomatic. The progressive increase in the thickness of the dentinal walls and subsequent apical development suggest that appropriate biologic responses can occur with this type of treatment.

Bose et al., 2009⁽⁴⁾ performed a retrospective study by collecting radiographs from 54 published and unpublished endodontic regenerative cases and 40 control cases (20 apexification and 20 nonsurgical root canal treatments) and used a geometrical imaging program, NIH ImageJ with TurboReg plug-in, to minimize potential differences in angulations between the preoperative and recall images and to calculate continued development of root length and dentin wall thickness. Results showed