

FACULTY OF ENGINEERING

Electrical Power and Machines Engineering

Performance enhancing of grid-connected DC microgrids

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

(Electrical Power and Machines Engineering)

by

Walid Ali Mohamed Ahmed Hatahet

Bachelor of Science in Electrical Engineering
(Electrical Power and Machines Engineering)
Faculty of Engineering, Ain Shams University, 2016

Supervised By

Prof.Dr. Mostafa Ibrahim Mohamed Marei
Dr. Mohamed Mokhtar

Cairo - (2020)

FACULTY OF ENGINEERING

Electrical Power and Machines

Performance enhancing of grid-connected DC microgrids

by

Walid Ali Mohamed Ahmed Hatahet

Bachelor of Science in Electrical Engineering
(Electrical Power and Machines Engineering)
Faculty of Engineering, Ain Shams University, 2016

Examiners' Committee

Name and Affiliation	Signature
Prof. Ayman Samy Abdel-Khalik	•••••
Electrical department, Alexandria University	
Prof. Ahmed A. El-Sattar A. El-Fattah Montaser	•••••
Electrical Power and Machines, Ain Shams University	
Prof. Mostafa Ibrahim Mohamed Marei	•••••
Electrical Power and Machines, Ain Shams University	

Date: / / 2020

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name
Walid Ali Mohamed Ahmed Hatahet
Signature

Date: / / 2020

Researcher Data

Name : Walid Ali Mohamed Ahmed Hatahet

Date of birth : 23- August - 1993

Place of birth : Monufia

Last academic degree : Bachelor of Science in Electrical Engineering

Field of specialization : Electrical power and machines

University issued the degree : Ain Shams University

Date of issued degree : 2016

Current job : Demonstrator

Thesis Summary

Recently, the DC microgrid has grasped more attention due to its inherent advantages such as high reliability, increased efficiency and simple control. However, voltage regulation and proper current sharing are considered the major issues associated with the DC microgrid. Also, enhancing the closed-loop performance of the power converter of each DG represents the main challenge for the DC microgrids. Hence, a hierarchal control scheme is adopted to overcome these challenges. The primary loop is utilized to control the inner-loop of each DG and the droop method is adopted in this loop. The tertiary loop is used to account for the deviation in voltage occurred due to the droop characteristics and control the power flow in the grid-connected mode. Finally, an outer loop is used to adjust the droop characteristics and control the power sharing of each DG in the microgrid.

In this thesis a rating- based control strategy is presented in order to adjust the power shared by the committed DGs in the DC microgrid. The droop characteristic is adjusted based on the size of each DG and the power sharing is determined based on its rating.

A distributed cost-based control strategy is introduced in order to minimize the total generation cost. The power sharing is adjusted based on the cost function of each DG. The incremental cost method is utilized in a distributed scheme, and the optimal generation is reached when all DGs reach a consensus value of the incremental cost.

In order to enhance the closed-loop performance of the power converter, two control techniques are introduced. A finite-state-machine based controller is developed to control the inner-loop of the dc/dc boost converter of each DG. In this method, the converter can be in certain states based on the relative values of two consecutive samples of the output voltage and the reference voltage signal. The advantages of this method are the simplicity of control and that the controller operates in a voltage mode, thus no current sensors are required.

Moreover, an output voltage tracking performance recovery based controller is developed to improve the closed-loop performance of the power converter of each DG. In this method, disturbance observers are designed based on multivariable approach to account for model mismatches and uncertainties. The controller estimates and cancels the disturbances due to parameters and load variations. The advantages of this method are fast dynamic response and the elimination of steady state errors without the use of integrators.

The feasibility and the robustness of the proposed control schemes are investigated by means of simulation studies using PSCAD/EMTDC package.

Key words: DC microgrid, Distributed generator, Economic dispatch, Incremental cost, Grid-connected, Droop characteristics, Finite-state-machine, Performance recovery.

Acknowledgment

First, I thank Allah for giving me the ability, patience, strength, and knowledge to complete this work.

I want to express my genuine appreciation and acknowledgement to my supervisors *Prof. Mostafa I.Marei* and *Dr. Mohamed Mokhtar* for their continuous efforts and endeavours during this work. Also, I would like to thank them for their patience, motivation and support.

I feel very grateful to *Prof. Mostafa I.Marei* for his expert guidance during this study, and many thanks to his constructive and insightful discussions and great advices. It has been a great honour to work under his supervision and his efforts are much appreciated.

My sincere thanks to *Dr. Mohamed Mokhtar* for his great advices and support during this work. Thanks to his continuous encouragement and motivation I have managed to complete this study. *Dr. M. Mokhtar* helps me a lot in developing the work progress and solving the associated problems, many thanks for his great efforts.

Also, I feel very grateful to all members of the **Electrical Power and Machines department** at **Ain Shams University**, and I am very proud to be part of them.

Finally, a lot of thanks for the endless effort exerted by my family to support me throughout this study. They have always provided me with inspiration, encouragement and motivation to complete this work. I will always be grateful and your endeavours are deeply appreciated.

Walid Ali Hatahet

Cairo-2020

Table of Contents

Chapter 1	1
Introduction	2
1.1 Smart grid	2
1.2 Microgrids	4
1.3 Classification of microgrids	5
1.3.1 AC microgrids	5
1.3.2 DC microgrids	6
1.3.3 Hybrid microgrids	6
1.4 Hierarchal control schemes	7
1.5 Distributed control scheme fundamentals	10
1.5.1 Graph theory	10
1.5.2 Consensus algorithm	10
1.6 Literature background and work motivation	11
1.7 Thesis objective	14
1.8 Thesis outline	15
Chapter 2	16
Rating-based control of DC microgrids	17
2.1 Introduction	17
2.2 Rating-based control strategy	17
2.2.1 The primary loop	17
2.2.2 The tertiary control loop	19
2.2.3 The current sharing loop	21
2.3 Case study (1): two DGs microgrid	21
2.4 Case study (2): three DGs microgrid	24
2.5 Summary	27
Chapter 3	28
Distributed consensus cost-based control strategy of DC microgrids	29
3.1 Introduction	29
3.2 Economic power dispatch strategy	29
3.3 The proposed distributed economic consensus controller	31
3.3.1 The EDP loop	32
3.3.2 The modified EDP loop	33
3.4 case study (1): Two DGs microgrid	34
3.5 Case study (2): three DGs microgrid	38
3.6 Summary	41
Chapter 4	42

Performance recovery output voltage tracking controller of DC microgrid	43
4.1 Introduction	43
4.2 Finite-state-machine control method	43
4.3 Output voltage tracking Performance recovery controller	46
4.4 Case study (1): two DGs microgrid	48
4.4.1 Rating-based strategy (FSM based control)	49
4.4.2 Rating-based strategy (performance recovery controller)	50
4.4.3 Cost-based strategy (performance recovery controller)	52
4.5 Case study (2): three DGs microgrid	53
4.5.1 Rating-based strategy (performance recovery controller)	53
4.5.2 Cost-based strategy (Output voltage tracking performance recovery controller)	55
4.6 Comparison between classic controllers and performance recovery output voltage trac	_
4.6.1 Two DGs microgrid	56
4.6.2 Three DGs microgrid	59
4.6.3 Testing the performance recovery controller against parameters variations	61
4.7 Summary	64
Chapter 5	65
Conclusion and future work	66
5.1 Conclusion	66
5.2 Future work	66
References	67

List of Figures

Fig. 1.1 Smart grid diagram.	3
Fig. 1.2 Fundamental structure of microgrids.	4
Fig. 1.3 Basic structure of AC microgrids.	
Fig. 1.4 Basic structure of DC microgrids.	6
Fig. 1.5 Basic structure of Hybrid microgrids.	7
Fig. 1.6 Hierarchal control scheme.	
Fig. 1.7 Centralized coordination control systems.	8
Fig. 1.8 Decentralized coordination control systems.	
Fig. 1.9 Distributed coordination control systems.	10
Fig. 2.1 Block diagram of the primary loop	18
Fig. 2.2 Droop gain adjusting method	18
Fig. 2.3 Nominal voltage shifting method.	19
Fig. 2.4 Average voltage through shifting droop characteristics	19
Fig. 2.5 Islanded and grid connected modes of operation	
Fig. 2.6 Current sharing loop.	21
Fig. 2.7 Two DGs microgrid rating-based control	23
Fig. 2.8 Three DGs microgrid cost-based control	
Fig. 3.1 Block diagram of the proposed cost-based strategy.	31
Fig. 3.2 Block diagram of proposed EDP loop.	32
Fig. 3.3 Modified block diagram of proposed EDP loop.	
Fig. 3.4 Changes in the communication network	
Fig. 3.5 Two DGs microgrid using cost-based	35
Fig. 3.6 Two DGs microgrid with inequality constraints, cost-based	37
Fig. 3.7 Three DGs microgrid cost-based control	38
Fig. 3.8 Three DGs microgrid with inequality constraints and cost-based control	40
Fig. 4.1 Block diagram of FSM controller	44
Fig. 4.2 Examples of Current and next states	44
Fig. 4.3 Modified block diagram of FSM controller	46
Fig. 4.4 Block diagram of DC microgrid with the performance recovery controller	47
Fig. 4.5 Block diagram of the performance recovery controller	47
Fig. 4.6 Two DGs microgrid using the FSM controller with the rating-based strategy	
Fig. 4.7 Two DGs microgrid using the performance recovery controller, rating-based	51
Fig. 4.8 Two DGs microgrid using the performance recovery controller, cost-based strategy	52
Fig. 4.9 Three DGs microgrid using the performance recovery controller, rating-based strategy	54
Fig. 4.10 Three DGs microgrid using the performance recovery controller, cost-based strategy	55
Fig. 4.11 Two DGs microgrid with rating-based strategy:PI and performance recovery controller	57
Fig. 4.12 Two DGs microgrid with cost-based strategy: PI and performance recovery controller	58
Fig. 4.13 Three DGs microgrid with rating-based strategy: PI and performance recovery controller	.59
Fig. 4.14 Three DGs microgrid with cost-based strategy: PI and performance recovery controller	.60
Fig. 4.15 Two DGs microgrid using performance recovery controller with rating-based strategy:	
parameters vriations	.61
Fig. 4.16 Two DGs microgrid using performance recovery controller with cost-based strategy:	
parameters vriations	. 63

List of Tables

Table 2.1 Electrical parameters of rating-based two DGs microgrid	22
Table 2.2 Cost function parameters of rating-based two DGs microgrid	22
Table 2.3 Electrical parameters of rating-based three DGs microgrid	24
Table 2.4 Cost function parameters of rating-based three DGs microgrid	24
Table 4.1 Rules for Duty cycle update decisions	44