

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of science Geophysics Department

"3D Modeling of Depositional Basin and Evaluation of the Extended Reservoirs in South Abu Gharadig and Alam El Shawish East oil Fields, Northern Western Desert, Egypt"

A Thesis Submitted

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Geophysics

By

Nihal Mohamed Ali Abdel Gawad

B.Sc. of Geophysics-2009

To

Geophysics Department faculty of Science Ain Shams University

Supervisors

Prof. Dr. Nasser Abou Ashour

Prof. Dr. of Geophysics Faculty of Science, Ain Shams University

Dr. Abdullah Mahmoud

Associate prof. of Geophysics Faculty of Science, Ain Shams University

Cairo

2020

Approval Sheet

"3D Modeling of Depositional Basin and Evaluation of the Extended Reservoirs in South Abu Gharadig and Alam El Shawish East oil Fields, Northern Western Desert, Egypt"

By

Nihal Mohamed Ali Abdel Gawad

B.Sc of Geophysics, Ain Shams University

A Thesis Submitted

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Geophysics 2020

Supervisors: Approved	
Prof. Dr. Nasser Abu Ashour	
Prof. Dr. of Geophysics	
Faculty of Science, Ain Shams University	
Dr. Abdullah Mahmoud	
Associate prof. of Geophysics	
Faculty of Science, Ain Shams University	
	Prof. Dr. Samy Hamid Abdel Nabi

Faculty of Science

Head of Geophysics Department

Ain Shams University

Note:

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment for the requirements of Master of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate attended postgraduate courses for one academic year in the following Topics:

- 1. Geophysical Field Measurements.
- 2. Advanced well Logging.
- 3. Elastic Wave Theory.
- 4. Physical Properties of Rock.
- 5. Formation Evaluation.
- 6. Subsurface Geology.
- 7. Geophysical Prospecting.
- 8. Sedimentary Basin Analysis.
- 9. Numerical Analysis.
- 10.Bascal programming
- 11. English Language.

She successfully passed the final examination for these courses in September 2010

Prof. Dr. Samy Hamid Abdel Nabi
Head of Geophysics Department
Faculty of Science
Ain Shams University

Abstract

"3D Modeling of Depositional Basin and Evaluation of the Extended Reservoirs in South Abu Gharadig (SAG) and Alam El Shawish East (AES-E) oil Fields, Northern Western Desert, Egypt"

The study area is a part of Abu El Gharadig basin, and is about 753.6 sq.Km divided by the development leases boundary into two parts, 495 sq.Km, in WD-30 development lease and 258.6 sq.Km, in AES-E development leases.

The perimeter of the area about 11 km to the Northeast, Abu El Gharadig field (AG field) is located which is the first oil and gas discovery, in Abu El Gharadig Basin (AG Basin), in the Western Desert of Egypt. It was discovered in 1969 and produced from the reservoirs of Lower Cenomanian Bahariya (BAH) Formation; Middle Cenomanian Abu Roach-G (ARG), Upper Cenomanian to Lower Turonian Abu Roash-E (ARE); and Middle Turonian Abu Roach-C (ARC) Member, Turonian Abu Roash-D (ARD) and Kharita Formation.

The structural mapping of the Middle to Upper Cretaceous intervals, using the converted, 2D seismic lines to 3D seismic cube and borehole data of about 8 wells, has been achieved to describe and understand the present-day three-way dip closure of SAG/AES-E extended field, and by means of 13 interpreted framework horizons from the deepest mappable horizon (estimated Top Early Jurassic), to the shallowest horizon (Oligocene time Top Dabaa) and creating isopach maps and 2D restoration showed the evolution of this part of AG basin, by extensional events in the NW-SE direction that started in Early Jurassic time, then the extension rotation towards NE-SW direction in Early Cretaceous

time, that continued during the deposition of Kharita Formation up to Khoman-B Member, then the extension events are followed by the compressional pulses of the Syrian Arch event, after the deposition of the Santonian Khoman-B Member, that continued to the Early Tertiary and resulted in the inversion of the deep seated rift structure and evolve the NW-SE faulted structure of SAG/AES-E Field.

The surgical mapping of the reservoir intervals and the extracted attributes reveal the facies distribution across the area and show the entry points of the fairways of the clastic reservoirs of Abu Roash-C, E, G, Upper Bahariya and Lower Bahariya, which are the main reservoir intervals in SAG/AES-E, and provide illustration about the confined paths of these system from the entry point from the southeast direction towards the rift basin to the West-Northwest and Northwest directions where the fairways becomes unconfined and lobate or forms basin floor fan.

The results of the geophysical study and the analysis of the pressure data give evidences of the possible connectivity of the reservoirs explored in SAG and AES-E and consider them as on straddle field across the common boundary that separate the development leases, this gives opportunity to clarify the concept of unitizing the production from a straddle field as per the petroleum agreement. This unitization process mainly aims to save the country benefits in the extended fields, preventing disputes between the leases owners and regulate the process of splitting the volumetric between the development leases that shares the straddle fields.

The petrophysical evaluation of well log data, from 8 wells in the study area, is carried out to quantify the parameters of Upper Cretaceous reservoirs of Abu

Roash and Bahariya formations in South Abu El Gharadig (SAG) and Alam EL Shawish-East (AES-E) fields. Moreover, the well logs have been prepared to be used for the quantitative reservoir characterization from seismic data by seismic inversion that requires high quality acoustic logs (compressional sonic log) and density logs.

The calculated pay parameters for all the reservoirs are ranged as PHIT of 17-25 %, N/G of 8-25 % and Sw of 10-30%. The original hydrocarbon pore volume (OHPV), is calculated to assign the calculated volumetric to reservoir condition, as it proved presence of the gas cap in the reservoirs like the AR.E Member and as wet gas reservoirs in the Bahariya Formation, where the production from any of these reservoirs may cause fluid phase change across the field.

The total calculated OHPV in WD-30 lease is about 319.5 mmbbls and about 35.4 mmbbls in AES-E development leases and by considering the field as one unit and splitting the extended reservoirs between the development leases proportionally with the percentile of the reservoirs extent in each lease, WD-30 development lease will hold 276.4 mmbbls, while the AES-E will hold 35.4 mmbbls.

The unitization process concluded that, the WD-30 license has 88.5% share of the reserves in all the reservoirs pass across the field, while AES-E area 3 and 4 includes 11.5% from the reserves in the extended reservoirs. The equity share of the unit field represents the rights and liabilities of each licensee on the SAG/AES-E field.

Acknowledgment

This thesis would not have been possible without the guidance, friendship support and enthusiasm of my supervisors, family and colleagues. I would like to thank them all for their efforts in supporting the technical work and manuscript. Among all of these, I would like to specially thank my supervisors; **Prof. Dr. Nasser Abou Ashour** and **Dr. Abdullah Mahmoud**. Their technical, personal support and their patience throughout the thesis were outstanding.

Many Thanks and gratitude to Mr. Adel Samaha "EGPC", Ms. Fatma Abdel Fattah, and to my colleges, geoph. Rehab Atef, geo. Amr El Sayed "EGPC", geo. Abdel Rahman Ayad, geo. Ahmed Hosny, geo. Mohamed Mostafa, Omar Khattab and Mohamed Sultan "EGAS", Eng. Ibrahim Merghany" Gupco" geo. Reda Hatata "Khalda petroleum company" and petroph. Nashwa El Saadany "Petrosennan petroleum company" and all my colleagues in "Bp Egypt", Whose give me great support and help.

Words would not be enough to express my love and gratitude to my beloved family specially my mother, father, sisters "Shimaa" "Aya" and brothers "Ahmed" "Belal, "Malek" and "Salim" for their great efforts, faith and pure love.

TABLE OF CONTENTS

Content	Page	e
Approval Shee	et I	Ι
Note	II	Ι
Abstract	IV	V
Acknowledger	ments V	V
Table of Conte	ents V	Ί
List of Figures	Σ	X
List of Tables	XVII	Ι
CHAPTER I:	: INTRODUCTION AND GEOLOGICAL SETTING :	
1.1. Study a	area and Objective 1	
1.2. Method	lology and Workflow 3	
1.3. Databas	se 6	
1.4. Seismic	e database 6	
	atabase 7	
	us Work of the Basin History 9	
1.7. Well Co	orrelation 28	
	I: FIELD EVALUATION AND MODELLING	
2.1. Seismic	c Data Conditioning 42	
	Seismic Coverage 42	
2.1.2. \$	Seismic Data Resolution 44	
2.1.3. \$	Seismic to Well Tie (SWT) and Phase Investigation 44	
	Tuning Thickness 49	
2.1.5. \$	Seismic Data Conversion (2D Seismic Lines to 3D Seismic Cube5)	1
	Post Stack Noise Filtration 53	
	C Inversion (Color Inversion) 55	
	e Attributes 60	
	c Mapping 62 c Interpretation 65	
	Basin Evolution 65	
	Trap Definition 83	
	Reservoir Definition Workflow 92	
	The Regional Stratigraphic Facies in the Study Area 94	
	Reservoir Definition of SAG/AES-E Field 97	
	y Model 126	
2.0. V CIUCIL	y 1/10dc1 120	

2.7. Petroleum System Analysis 130
2.8. Well Success Failure Analysis 144
CHAPTER III: PETROPHYSICAL ANALYSIS
3.1. Well Data quality control 152
3.1.1. Depth Shift 153
3.1.2. Well Data Correction 156
3.2. Clay Type Investigation 166
3.3. Core Data Preparation 1723.4. MDT pressure data analysis 175
3.4.1. Pressure Analysis of ARC, ARD and ARE Members 175
3.4.2. Pressure Analysis of ARG Member 178
3.4.3. Pressure Analysis of Upper Bahariya Formation 182
3.4.4. Pressure Analysis of Lower Bahariya Formation 182
3.5. Well logging Analysis 186 3.5.1. Determination of volume of shale 186
3.5.2. Porosity Determination 194
3.5.3. Permeability Determination 197
3.5.4. Water Saturation Determination 200
3.5.5. Rock Typing 205
3.5.5.1 Rock Typing of ARD 205
3.5.5.2. Rock Typing of ARG 208
3.5.5.3. Rock Typing of Bahariya 211
3.5.5.4 Rock Typing of ARE 213
3.5.5.5. Rock Typing of ARC 213
3.5.5.6 Rw Redetermination 215
3.5.6. Determination of Vsh, PHIT and Sw cutoffs 216
3.5.7. Averaging Reservoir Parameters (PHI, Sw and N/G) 220
3.5.7.1. ARC pay parameters 221
3.5.7.2. ARD pay parameters 221

3.5.7.3. ARE pay parameters 222
3.5.7.4. ARG-Top pay parameters 224
3.5.7.5. ARG-S3 pay parameters 225
3.5.7.6. UBAH-1 pay parameters 232
3.5.7.7. UBAH-2 pay parameters 232
3.5.7.8. UBAH-3 pay parameters 236
3.5.7.9. LBAH pay parameters 237
3.5.8. Hydrocarbon volumetric of the reservoir intervals in SAG/AES-E field240
CHAPTER IV: UNITIZATION PROCESS IN THE EGYPTIAN
PETROLEUM AGREEMENTS
4.1. Introduction 243
4.2. Unitization Objective 246
4.3. When unitization shall be applied 248
4.4. Unitization Principles 250
4.5. Unitization Process Stages 250
4.6 Calculation of Tract Participation and the Redetermination 252
4.7 South Abu El Gharadig / Alam El Shawish East Unitization Case 255
SUMMARY AND CONCLUSION 264
<u>REFERENCES</u> 268
ARABIC SUMMARY – الملخص العربي . 271

LIST OF FIGURES

Figure No.	Figure description	Page No.
Fig 1-1	Location map of study area in the Mesozoic AG basin	2
Fig 1-2	The Study area in the regional context of AG Basin and the location of the SAG/AES-E field which extends WD-30 and E-AES 3 and 4 development leases	6
Fig 1-3	The available 2D seismic lines in the study area	7
Fig 1-4	Structural-stratigraphic cross-section through the Abu El Gharadig Basin (C&C reservoirs the analog company 2002)	11
Fig 1-5	Scenarios Neotethy's opening by transcurrent movement "Sinistral movement" between Africa and Laurussia and the opposite direction "Dexteral movement" during closing of Tethys and convergence between the two plates (Said,1990)	12
Fig 1-6	The generalized tectono-stratigraphic sequences in AG field (El Gazzar et al., 2016).	27
Fig 1-7	Present day maturity map of ARF Member in the Abu El Gharadig Basin (C&C reservoirs the analog company 2002).	28
Fig 1-8	A correlation panel (using Gamma Ray and deep Resistivity logs) between wells AG-69&AG-88 at SAG/AG88 area in WD-30 side and EHG1-1 well in AES-E3 side	29
Fig 1-9	A base map shows the trend of the correlation panel between WD-30 and AES-E wells	32
Fig 1-10	Stratigraphic correlation flattening on top UBAH, the Formation starts with thin carbonate marker and ends with the blocky sand of LBAH	33
Fig 1-11	Stratigraphic correlation flattened on top ARG Member correlation and its distinctive subzones	35
Fig 1-12	Stratigraphic correlation flattened on top ARE, shows the developed sand in AG-69, ARE is producing from EHG1-2	37
Fig 1-13	Stratigraphic correlation flattened on top ARD Member shows the thickness change of ARD across the area	38
Fig 1-14	Stratigraphic correlation flattening on top ARC Member	41
Fig. 2-1	The 2D seismic coverage in the study area, the names of the surveys per eadevelopment lease and the outline of the area of interest that includes SAG E extended field	

	Two-way-Time seismic section combines the two seismic vintages and	
Fig. 2-2	shows the different seismic record length in WD-30 and AES-E	43
	development leases	
Fig. 2-3	Frequency spectrum for both seismic vintages in the area	44
8	Interval Velocity Vs Depth of the three check-shots data in wells EHG1-	
Fig. 2-4	1, Meghar-6 and AG-69	45
Fig. 2-5	SWT of EHG1-1well, using (petrosennan-2010) seismic survey	46
Fig. 2-6	SWT of AG-69 well, to the (Khalda-2014) seismic survey	48
Fig. 2-7	Determining of the tuning thickness, by forward modelling of wedge modeling approach, by using Richer wavelet of 18 HZ at AG-69 well	51
Fig. 2-8	The workflow of converting closed spacing 2D lined to 3D cube	53
Fig. 2-9	N-S TWT seismic section, along the block boundary between WD-30 and AES-E, before and after noise filtration	54
	Continued, a base map shows the A-A' seismic section	55
Fig. 2-10	Comparison between the inversion vs reflectivity data	56
Fig. 2-11	The petrel process of creating Color Inverted cube	58
Fig. 2-12	Comparison between the reflectivity and CI cubes, using AI log, of EHG1-1 well	58
Fig. 2-13	Comparison between different CI operators and their effect on identifying the lithologies	59
Fig. 2-14	The effect of CI data that posting the high frequency content and identifying more details in the seismic data	60
Fig. 2-15	Different extracted attributes to get most benefit from the created 3D cube	61
Fig. 2-16	Mapping stages for the study area at the seabed level. A – Shows the grid of interpretation of 10*20 grid in the in-line and x-line directions. B – shows the auto-tracking stage, both A and B represent the mapping of top ARE	64
Fig. 2-17	Base map showing seismic section 1 and section2	65
Fig. 2-18	Uninterpreted and interpreted (Section 1) arbitrary seismic section (A-A') showing structural complexity and the reservoir intervals. "For the Section location and extent see Fig 2-17"	66
Fig. 2-19	Uninterpreted and interpreted (Section 2) arbitrary seismic section (B-B') showing the limits of each structural complexity and the reservoir intervals. "For the Section location and extent see Fig 2-17"	68
Fig. 2-20	(A-A') TWT seismic section extending from SAG/AES-E towards AG Field flattened on top of estimated Mid.Jurassic seismic marker shows the onset of AG Jusrassic rift basin and the corresponding Isopach map	72
Fig. 2-21	(A-A') TWT seismic section flattened on top of "estimated Lower creatceous seismic marker" shows the development of the NE-SW trending rift basin and its isopach map.	73