

Characterization of bioactive compounds secreted by some fungal antagonists against *Curvularia* spicifera

Thesis

Submitted in partial fulfillment of the requirements of the degree of Ph.D in Microbiology (Microbiology)

BY

Shimaa Ahmed Gouda

(B.Sc. Microbiology, 2012) (M.Sc. Microbiology, 2017)

Supervisors

Dr. Naziha Mohamed Hassanein

Professor of Mycology and Plant pathology, Microbiology Department, Faculty of Science, Ain Shams University

Dr. Omar Alfarouk Rabiee

Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Dr. Peter Farag Fouad

Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

> Department of Microbiology Faculty of Science Ain Shams University (2020)

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to Allah, the most beneficent and merciful. I can do nothing without Him

I would like to express my deep gratitude and thanks to my dear supervisor Dr. Naziha Mohamed Hassanein, Professor of Mycology and Plant pathology, Department of Microbiology, Faculty of Science, Ain shams university, for her help, encouragement, continuous advice and her expert supervision to bring this thesis to more than satisfactory finish. She always patient, perfect in work organization and the best advisor. Iam proud to be one of her students and I hope that she is satisfied with me.

A great thanks to Dr. Omar Alfarouk Rabiee, Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University for his supervision, support, encouragement, valuable advices and constant help.

A great thanks to Dr. **Peter Farag Fouad**, Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University for his supervision, support, encouragement, valuable advices and constant help.

Very special thanks to Dr. Adel A. El Khabiry, Chairman and Managing Director of the Arab Company for Pharmaceuticals and Medicinal Plants (Mepaco – Medifood) and Chairman of Upper Egypt Pharmaceuticals for his encouragement, support, great and valuable help and for all the GC/MS analysis, to be provided in time which made this work possible.

Very special thanks to Dr. **Sameh Rizk**, Professor of organic Chemistry, Department of Chemistry, Faculty of Science, Ain shams University for his support, encouragement during my study.

A deep thank to Microbiology Department and all my Colleagues in microbiology department for their assistance, support and for providing a suitable environment during my work

Dedication

This thesis is dedicated with love to my family:

Father, mother, sister and my husband for their tired for me, continuous support, encouragement from the start of study.

Approval sheet

Characterization of bioactive compounds secreted by some fungal antagonists against *Curvularia* spicifera

BY

Shimaa Ahmed Gouda

(B.Sc. Microbiology, 2012) (M.Sc. Microbiology, 2017)

Supervisors

Dr. Naziha Mohamed Hassanein

Professor of Mycology and Plant Pathology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Omar Alfarouk Rabiee

Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Peter Farag Fouad

Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Examination committee

Dr. Abdel Nasser Badawi Singab

Professor, Department of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Ain Shams University and Vice President for Graduate Studies & Research.

Dr. Lobna Abdel Aziz Moussa

Professor of Microbiology, Microbiology Department, Agricultural Research Center.

Dr. Naziha Mohamed Hassanein

Professor of Mycology and Plant Pathology, Microbiology Department, Faculty of Science, Ain Shams University.

Date of examination / / Approval date / / University council approved / /

List of Contents

Contents	Page
Acknowledgement	
List of Tables	
List of Figures	
List of Abbreviations	
Abstract	
Chapter I: Introduction	1
Chapter II: Review of literature	
1. Rice	8
1.1. Rice importance	8
1.2. Taxonomy	10
1.3. Morphology	11
1.4. Egyptian rice cultivation and varities	13
2. Rice diseases	16
2.1. Major bacterial diseases of rice	
2.1.1. Bacterial blight disease	
2.1.2. Bacterial leaf streak.	
2.2. Major viral diseases of rice	
2.3. Major fungal diseases	
2.3.1. Rice blast	
2.3.2. Brown spot	
2.3.3. False smut	
3. Brown spot disease	23
3.1. Brown spot disease symptoms	
3.2. Brown spot disease pathogens	
4. Curvularia spicifera	
4.1. Nomenclture of <i>Curvularia</i> sp	26
4.2. Macroscopic and microscopic taxonomic features	26
4.3. Curvularia spicifera diseases	27
5. Types of pathogen control	28
5.1. Regulatory control	28
5.2. Cultural practices that eradicate or reduce the inoculum	29
5.3. Chemical control	29
5.4. Biological control	20
5.4.1. Biological control Mechanism	32
6. Microbial bioactive secondary metabolite	
6.1. Production of metabolite by rhiosphere fungi	
6.2. Fungal secondary metabolites	
6.3. Fungal volatile and non-volatile organic metabolite	41

6.3.1. Fungal volatile organic compound (VOCs)	41
6.3.2. Fungal nonvolatile organic compound (nVOCs)	44
6.4. Classes of fungal secondary metabolite	45
S	45
- J	- 5
1	4 0 48
r	40 49
T T T T T T T T T T T T T T T T T T T	49 49
j j	-
y .	50 50
	50 50
1 0 11	50
11	55
11	58
	63
\mathcal{C} 1 \mathcal{I}	63
8.2. Solid-phase microextraction (SPME)	64
Chapter III: Materials and Methods	
1. Rice rhizosphere fungi and brown leaf spot pathogens	66
	66
$r \sim r$	66
	60 67
	67
1	68
Γ	68
1 1	68
J	68
1 &	69
3. In vitro antagonistic interaction between rhizosphere fungi and Curvularia	
spicifera	70
3.1. Fungal strains and culture conditions	70
3.2. Screening for antifungal volatile compounds produced by	
antagonistic fungi	70
3.3. Screening for antifungal nonvolatile compounds produced by	
	71
4. Characterization of secondary metabolites produced by antagonistic fungi	
	72
4.1. Characterization of volatile compounds produced by antagonistic	
	72
e	72
1.1.1.11oparation of sample	, 2
4.1.2. Isolation of volatile compounds from fungal antagonists	72

4.2. Characterization of nonvolatile compounds produced by antagonistic	
fungi	73
4.2.1. Preparation of inoculum for small scale fermentation	73
4.2.2. Extraction and separation of antifungal metabolites	74
4.3. Purification of <i>Aspergillus terreus</i> ethyl acetate crude extract	76
5. Antimicrobial activity test	77
5.1. Antimicrobial activity test of fungal antagonists crude extract against	
Curvularia spicifera	77
5.2. Antimicrobial activity test of purified compound of <i>Aspergillus terreus</i>	
against Curvularia spicifera	78
6. GC- studies	80
6.1. Gas chromatography	80
6.2. DFT-based characterization	81
6.3. Computational details	81
7. Media and reagents were used for isolation, extraction and purification of	01
bioactive compound	83
7.1. Media used for isolation and extraction.	83
	84
7.2. Reagent used for isolation and extraction	
8. Statistical analysis	84
Chapter IV: Results	
1. Isolation and identification of rice rhizpsphere fungi from soil	85
2. Identification of <i>Curvularia spicifera</i> as a brown spot pathogen	89
2.1. Morphological identification	89
2.2. Molecular identification	91
3. Screening for antifungal volatile compounds produced by antagonistic fungi	
against Curvularia spicifera	93
4. GC-MS analysis of the volatile compounds produced by the selected	
antagonistic fungi	98
4.1. Fusarium moniliforme var subglutinans	98
4.2. Penicillium verrucosum	102
4.3. Aspergillus terreus	106
4.4.Comparison between volatile compounds produced by the selected three	100
fungal species	109
	10)
5. Screening for antifungal nonvolatile compounds produced by the selected	111
antagonistic fungi	111
6. Antimicrobial activity of the crude metabolite	115
7. GC–MS analysis of the ethyl acetate crude extract produced by antagonistic	
fungi	119
7.1. Aspergillus terreus	119
7.2. Penicillium verrucosum	124

8. Antimicrobial activity of purified compounds from <i>Aspergillus terreus</i> ethyl	
acetate crude extract	128
Chapter V: Discussion	134
Chapter VI: Summary	176
Chapter VII: References	181
Arabic summary	

List of Tables

Table no.	Title	Page
Table 1:	Showing program used for amplification	69
Table 2:	Showing the sets of compounds were tested against Curvularia spicifera	79
Table 3:	Count and frequency of fungi isolated from rhizosphere of rice plants cultivated in of El- Dakahlia and El- Qaliubiya	86
Table 4:	In vitro volatile compounds antagonistic activity of the selected rhizosphere fungi against Curvularia spicifera.	94
Table 5:	The most abundant volatile metabolites identified from <i>Fusarium moniliforme</i> var <i>subglutinans</i> using GC-MS.	100
Table 6:	The most abundant volatile metabolites identified from <i>Penicillium verrucosum</i> using GC-MS.	104
Table 7:	The most abundant volatile metabolites identified from <i>Aspergillus terreus</i> using GC-MS.	108
Table 8:	Common volatile organic compounds emitted by Fusarium moniliforme var subglutinans, Penicillium verrucosum and Aspergillus terreus	110
Table 9:	Agar plug diffusion for antagonistic activity of the selected rhizosphere fungi against <i>Curvularia spicifera</i>	112
Table 10:	In vitro antimicrobial activity of ethyl acetate, chloroform and hexane crude extract of the	116

	selected rhizosphere fungi against Curvularia spicifera	
Table 11 :	The most abundant metabolites identified from <i>Aspergillus terreus</i> ethyl acetate extract using GC-MS.	122
Table 12:	The most abundant metabolites identified from <i>Penicillium verrucosum</i> ethyl acetate extract using GC-MS.	126
Table 13:	Antimicrobial activity of purified compounds of <i>Aspergillus terreus</i> crude extract against <i>Curvularia spicifera</i> .	129
Table 14:	Quantum chemical parameters calculated for the studied compounds purified from Aspergillus terreus ethylacetate crude extract	162

List of Figures

Figure no.	Title	Page
Fig. 1:	Rice plant diagram.	13
Fig. 2:	Polyketide biosynthesis pathway.	46
Fig. 3:	Terpenoid biosynthesis pathway.	47
Fig. 4:	Shikimic acid biosynthesis pathway.	48
Fig. 5:	Chemical structures of alkaloid compounds 12-14 and 127-132.	52
Fig. 6:	Chemical structure of a. lovastatin, b. aflatoxin B1(AFB1) and c. ochratoxin A (OTA).	54
Fig. 7:	The chemical structure of a. patulin and b. citrinin.	57
Fig. 8:	The chemical structure of selected antimicrobial compounds reported from <i>Fusarium</i> sp.	59
Fig. 9:	Naphto-quinone chemical structure of some darkred pigments from <i>F. Moniliforme</i> and structure of the zearalenone.	62
Fig. 10:	Photomicrograph of <i>Aspergillus terreus</i> isolated from rhizosphere soil of rice plants. (a) macromorphology on PDA (b) micromorphology on PDA	87
Fig. 11:	Photomicrograph of <i>Penicillium verrucosum</i> isolated from rhizosphere soil of rice plants. (a) macromorphology on PDA (b) micromorphology on PDA.	87
Fig. 12:	Photomicrograph of <i>Fusarium moniliforme var subglutinans</i> isolated from rhizosphere soil of rice plants. (a) macromorphology on PDA (b) micromorphology on PDA.	88

Fig. 13:	Photomicrograph of <i>Drechslera spicifer</i> a isolated from naturally infected rice plants. (a) macromorphology on PDA (b) and (c) micromorphology on PDA	90
Fig. 14:	Aligned sequence of <i>Curvularia spicifera</i> strain MT065642 based on PCR amplification of 18S-rRNA gene	91
Fig. 15:	Dendrogram showing the phylogenetic analysis of <i>Curvularia spicifera</i> strain MT065642 based on the results of PCR amplification of 18S-rRNA gene.	92
Fig. 16:	Divided plate assay for the influence of volatile metabolites produced from some antagonistic soil rhizosphere fungi on the mycelial growth of <i>Curvularia spicifera a. Fusarium moniliforme</i> var <i>subglutinans</i> b. <i>Fusarium fusarioides</i> c. <i>Penicillium verrucosum</i> d. <i>Aspergillus terreus</i> e. <i>Penicillium minioluteum</i> f. <i>Penicillium dimorphosporum</i> g. <i>Aspergillus fumigatus</i> h. control	95
Fig. 17:	Effect of volatile metabolites of some rhizosphere fungi on the inhibition of brown spot pathogen (<i>Curvularia spicifera</i>) growth.	97
Fig. 18:	HS-SPME-GC-MS total ion current chromatogram of MVOCs of <i>Fusarium moniliforme</i> var <i>subglutinans</i> _obtained after cultivation for 7day	99
Fig. 19:	HS-SPME-GC-MS total ion current chromatogram of MVOCs of <i>Penicillium verrucosum</i> obtained after cultivation for 7 days	103
Fig. 20:	HS-SPME-GC-MS total ion current chromatogram of MVOCs of <i>Aspergillus terreus</i> obtained after cultivation for 7 days	107

Fig. 21:	Agar plug diffusion method for the influence of non volatile metabolites produced from some antagonistic soil rhizosphere fungi on the mycelial growth of <i>Curvularia spicifera</i> a. <i>Aspergillus terreus</i> b. <i>Aspergillus fumigatus</i> c. <i>Penicillium dimorphosporum</i> d. <i>Penicillium verrucosum</i> .	113
Fig. 22:	Effect of nonvolatile metabolites of selected rhizosphere fungi against brown spot pathogen (<i>Curvularia spicifera</i>) growth by using disk plug diffusion method	114
Fig. 23:	Antimicrobial activity of ethyl acetate crude extract of selected rhizosphere fungi against <i>Curvularia spicifera</i> a. <i>Aspergillus terreus</i> b. <i>Aspergillus fumigatus</i> c. <i>Penicillium verrucosum</i> d. <i>Penicillium dimorphosporum</i> e. Control of dissolving solvent.	117
Fig. 24:	Effect of ethyl acetate crude extract of the selected rhizosphere fungi against brown spot pathogen (<i>Curvularia spicifera</i>) growth.	118
Fig. 25:	GC-MS total ion current chromatogram of <i>Aspergillus terreus</i> ethyl acetate crude extract.	121
Fig. 26:	GC-MS total ion current chromatogram of <i>Penicillium verrucosum</i> ethyl acetate crude extract.	125
Fig. 27:	Antimicrobial activity of purified compounds from <i>Aspergillus terreus</i> ethyl acetate crude extract against <i>Curvularia spicifera</i> a. compound 4 b. compound 5 c. mix compound 4 and 5 d. mix compound 2 and 3 e. mix compound 2 and 5 f. mix compound 1, 2and 3 g. mix compound 1, 3 and 4 h. mix compound 2, 3 and 5 i. control of dissolving solvent.	131

Eig 20.	Effect of purified compounds from Asnewallus	133
Fig. 28:	Effect of purified compounds from Aspergillus	133
	terreus ethyl acetate crude extract against brown	
	spot pathogen (<i>Curvularia spicifera</i>) growth.	
Fig. 29:	GC-MS spectrum fragmentations of Fusarium	143
	moniliforme.	
Fig. 30:	Outline the Mass fragmentation of the polyketide	144
	m/z 487 and base peak of Spirofuranone moiety	
	at m/z 242.	
Fig. 31:	Outline the optimized structure of the furanone	146
J	epoxide and Spiro-oxetane.	
Fig. 32:	Outline the optimized structures of the polyketide	147
<i>G</i>	and Spiro furanone.	
Fig. 33:	Outline the optimized structures of compound 9	148
9	at m/z 346 [M. ⁺].	_
Fig. 34:	Outline the optimized structures of compound 10	150
8	at m/z 253 [MH]+	
Fig. 35:	Outline the optimized structures of compound 11	151
116.00.	at m/z 378 [MH]+	131
	₩ 122 Z V V [2121 Z Z]	
Fig. 36.	Outline the optimized structures of compound 12	152
Fig. 36:	at m/z 280 [M.+] and 281 [MH]+	132
E:~ 27.		153
Fig. 37:	Outline the optimized structures of compound 3	133
T 1 40	at m/z 252.9 [M.+]	151
Fig. 38:	Outline the optimized structures of compound 4	154
	at m/z 206.95 [MH]+	
Fig. 39:	Outline the optimized structures of compound 6	155
	at m/z 207 [M. ⁺]	
Fig. 40:	Outline the optimized structures of compounds 4	156
	at m/z 206.95[MH]+ and 7 m/z 355 [M.+]	
Fig. 41:	Outline the chemical and optimized structures	163
	HO, LU and charge density of compound 1 at	
	m/z 280 [M.+] purified from Aspergillus terreus	
	ethylacetate crude extract.	
Fig. 42:	Outline the chemical and optimized structures	164