

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHATRONICS ENGINEERING

Modeling, Simulation, and Development of Stability Control Strategy for Integrated Wheel Vehicles

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Mechanical Engineering (Mechatronics Engineering)

Βv

Mustafa Shawki Rawash Ali

Bachelor of Science in Mechanical Engineering (Mechatronics Engineering, Ain Shams University, 2012)

Supervised by

Prof. Farid Abdelaziz Tolbah Dr. Mohamed Ahmed Ibrahim Abdelaziz Dr. Maged Mohamed Motwali Ahmed Ghoneima

Cairo – (2020)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

MECHATRONICS ENGINEERING

Researcher name: Mustafa Shawki Rawash Ali

Mechatronics Department

Faculty of Engineering – Ain Shams University

Signatura

Thesis title: Modeling, Simulation, and Development of Stability Control Strategy

for Integrated Wheel Vehicles

Degree: M. Sc. in Mechanical Engineering (Mechatronics Engineering)

Examination committee:

		Signature
Prof. Ahmed Elgeushey Fatooh Mousa Professor of Mechanical Power and Automotive Engineering, Helwan University	(External Examiner)	
Prof. Sherif A. Hammad Head of Mechatronics Eng. Dept., Ain Shams University, Faculty of Engineering	(Examiner)	
Prof. Farid Abdelaziz Tolbah Professor of Mechanical Design and Production, Ain Shams University, Faculty of Engineering	(Supervising Committee)	

Examination Date: 28/10/2019

Statement

This thesis is submitted as a partial fulfillment of the degree of Master of Science in Mechanical engineering, Faculty of Engineering, Ain Shams University. The author carried out the work included in this thesis and no part of it has been submitted for a degree or qualification at any other scientific entity.

Mustafa Shawki Rawash Ali
Signature

List of Publications

The following publications have been published while in conduct of this study:

 M. Rawash, M. Abdelaziz, M. Ghoneima and F. Tolbah, "Modular Estimation Strategy of Vehicle Dynamic Parameters for Motion Control Applications, "MATEC Web of Conferences 166, 02006, 2018.

Researcher Data

Name: Mustafa Shawki Rawash Ali

Date of birth: 5th of October 1991

Place of birth: United Arab Emirates

Last academic Degree: Bachelor of Science in Mechanical Engineering

Field of specialization: Mechatronics Engineering

University issued the degree: Ain Shams University

Date of issued degree: 2012

Abstract

Due to the high number of injuries and fatalities from road crashes, the presence of active safety systems such as Traction Control (TC), Anti-lock Braking System (ABS), and Stability Control (SC) has become a necessity, where statistics have proved their effectiveness in reducing road crashes. SC actively controls the yaw rate and/or side slip angle which define the directional behavior of the vehicle.

In the literature, SC has been researched for decades and with the rising concern regarding the environmental impact of fossil fuel powered vehicles, SC has also migrated into electric vehicles with In-Wheel motors or vehicles with independently driven wheels, referred to in this thesis as Integrated-Wheel (IW) vehicles. This type of vehicles presents a platform for advanced vehicle motion control, but are considered over actuated. Therefore, in this thesis, Model Predictive Control (MPC) is applied for SC of IW vehicles, since it relies on a model for predicting future system states and outputs, and effectively applies the most suitable combination of control actions or inputs according to an objective function. The methods of actuation are individual wheel's driving and braking torque.

Linear Time Varying MPC (LTVMPC) was the type of MPC selected for application, due to the nonlinear nature of vehicle dynamics. It is considered the most practical in terms of complexity, accuracy, and computational cost with respect to other types of MPC applicable for nonlinear systems, namely Nonlinear MPC and Hybrid MPC. In LTVMPC, the system is linearized about the current operating point at each sample time.

Since tire slip ratio not only affects the longitudinal force developed in the tire contact patch, but also affects the tire's capacity to develop lateral force needed for lateral stability, it was customary for there to exist a separate slip control system, such as TC or ABS, along with SC. However, this compromises the optimality of the control actions demanded by any of both, since it would be later altered by the other. In this work, slip control was integrated into the control system by incorporating wheel dynamics into the prediction model, and the controller works towards stabilizing the vehicle directional behavior and wheel slip together through the same objective function.

Another advantage of using MPC is that limits of capacity of all actuator could be considered when calculating the control actions. The limits of actuator

capacity are regarded as bounds on control actions when solving the objective function using a quadratic programing solver. The proposed controller also offers the advantage that it could be applied to vehicles with different drive configurations, such as front-wheel-drive, rear-wheel-drive, or 4-wheel drive, and vehicles with different parameters with minimal tuning.

A modular estimation strategy was developed to support the controller with vehicle dynamic parameters not measurable by real sensors, due to technical or economic difficulties. The strategy is modular in that each module is concerned with estimating a single type of vehicle parameter, which offers the advantage of being able to upgrade individual modules or add new ones for estimating additional parameters. The parameters estimated by the strategy include: longitudinal, lateral, and vertical tire forces, longitudinal and lateral velocities, vehicle mass, body roll and pitch angles, and total roll and pitch angles. The strategy was also validated by simulations using a 14 Degree Of Freedom (DOF) vehicle model in Matlab and Simulink.

The performance of the proposed stability controller was also validated in a complete simulation environment in Matlab and Simulink comprising a driver model, a 14-DOF vehicle model, the estimation strategy, and the proposed controller. Three maneuvers were carried on, and in all three maneuvers the controller exhibited good performance in tracking the desired yaw rate, maintaining a small side slip angle, and stabilizing wheel slip ratios.

Key words: stability control, vehicle handling, traction control, in-wheel electric vehicles, model predictive control, linear time varying systems, parameter estimation, modeling and simulation.

Acknowledgments

I would like to thank my supervisors Prof. Farid Tolbah, Dr. Mohamed Abdelziz, and Dr. Maged Ghoniema for their support, provision, and patience.

I would like to also thank my mentors, Prof. Ahmed Abdelaziz for his wonderful lectures that has helped in my understanding of tire and vehicle dynamics necessary for the completion of this thesis, and Dr. Shady Mohamed for his unconditional hands-on technical support and follow up.

Also, I would like to thank my dear friend and college Mostafa A. Arafa for his welcoming and continuous support, technical and non-technical, and his guidance.

I would like to express my gratitude to my deceased father, an automotive engineer who, ever since I was a child, has taught me the how stuff works of cars which motivated me to be the person I am today presenting the work I present to you today, and I hope that I have fulfilled his wishes of earning a post-graduate degree from the same university he once attended, the reputable Ain Shams University.

Moreover, I would like to express my deepest gratitude to my mother, who has always been there for me, through my easiest and toughest moments, who has prioritized my success above anything else, who's without her encouragement and believe in me, the completion of this work wouldn't have been realized.

Table of Contents

Statement	i
List of Publications	iii
Researcher Data	v
Abstract	vii
Acknowledgments	ix
Table of Contents	xi
List of Figures	xiii
List of Tables	xvii
List of Abbreviations	xix
Chapter 1: Introduction	1
1.1. Road Crashes	1
1.2. Active safety systems	2
1.3. Stability control	3
1.4. Motivation	5
1.5. Thesis outline	6
Chapter 2: Literature review	7
2.1. Literature review on stability control	7
2.1.1. Stability analysis	7
2.1.2. Envelope control	9
2.1.3. Reference tracking control	10
2.1.4. Stability control using model predictive control	11
2.1.5. Nonlinear model predictive control	12
2.1.6. Hybrid model predictive control	12
2.1.7. Linear time varying model predictive control	13
2.1.8. Integration of stability control and wheel slip control	14
2.2. Literature review on vehicle parameters estimation	15
2.3. Summary	18
Chapter 3: Vehicle Modeling	19
3.1. 14-DOF vehicle model	19
3.2. Tire model	21
3.3. Sensors model	22
Chapter 4: Estimation strategy	25
4.1. Longitudinal tire force estimation	26