

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Irrigation and Hydraulics Department

Investigating Parent Distribution for Maximum Daily Rainfall in Arid Regions

A Thesis Submitted in Partial Fulfillment for the Requirements of Master of Science Degree in Civil Engineering (Irrigation and Hydraulics)

By

Wael Magdy Abdeen Saad El-Deen

B.Sc. of Civil Engineering
(Public Works)
Ain Shams University, 2002

Supervised By

Prof. Dr. Nagy Ali Ali Hassan Prof. Dr. Ayman Georges Awadallah

Professor of irrigation and hydraulics Professor of water resources engineering

Irrigation and Hydraulics Department Civil Engineering Department

Faculty of Engineering Faculty of Engineering

Ain Shams University Fayoum University

Cairo 2020

Ain Shams University Faculty of Engineering Irrigation & Hydraulics Department

Investigating Parent Distribution for Maximum Daily Rainfall in Arid Regions

By

Eng. Wael Magdy Abdeen Saad El-Deen

A thesis Submitted for the partial fulfillment of the Master of Science Degree EXAMINERS COMMITTEE

Name	Signature
Prof. Dr. Ashraf Mohamed El Moustafa Professor of Engineering Hydrology Irrigation & Hydraulics Department Faculty of Engineering, Ain Shams University Prof. Dr. Karima Mahmoud Attia	
Professor Emeritus National Center for Water Research Ministry of Water Resources and Irrigation Prof. Dr. Nagy Ali Hassan	
Professor of Irrigation Design Irrigation & Hydraulics Department Faculty of Engineering, Ain Shams University	
Prof. Dr. Ayman Georges	
Awadallah	
Professor of Water Resources Engineering Civil Engineering Department Faculty of Engineering, Fayoum University	

THE AUTHOR

Name: Wael Magdy Abdeen Saad El-Deen

Date of Birth: 23 - May-1980

Place of Birth: Giza, Egypt

Scientific Degrees: B.Sc. Civil Engineering – Public Works, 2002

Current Job: Senior Environmental Engineer

Dar Al-Handasah (Shair and Partners)

Cairo, Egypt

STATEMENT

This thesis is submitted to the Irrigation and Hydraulics
Department, Faculty of Engineering, Ain Shams University to
fulfill all the requirements needed to obtain the Master of Science
degree in civil engineering.

The work in this thesis was carried out in the Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University from 2013 to 2019.

I hereby confirm that the thesis component hasn't been submitted in any other university or educational institutions in order to get any educational degrees.

Name: Wael Magdy Abdeen

Date: 1 / 6 /2020

Signature:

ACKNOWLEDGMENTS

In this at the beginning and the end, thanks to Allah. It is a delight to acknowledge those who have supported me over years to finalize the thesis. I would like to thank my supervisors, Prof. Dr. Ayman Awadallah and Prof. Dr. Nagy Hassan, for continuous guidance and support. I appreciated the constant help, advice, and support while conducting my research.

Lastly, but by no means least, I wish to thank my parents, brother, wife, and kids for their love and encouragement, without whom I would never have enjoyed so many opportunities.

Table of Contents

TABLE OF CONTENTS	II
LIST OF TABLES	V
LIST OF FIGURES	VI
NOMENCLATURE	VIII
ABSTRACT	IX
CHAPTER 1: INTRODUCTION	
1.1. BACKGROUND	1
1.2. PROBLEM DEFINITION	3
1.3. STUDY OBJECTIVES	4
1.4. RESEARCH METHODOLOGY	5
1.5. ORGANIZATION OF WORK	5
CHAPTER 2: LITERATURE REVIEW	
2.1. INTRODUCTION	7
2.2. FREQUENCY ANALYSIS	8
2.3. COMMON DISTRIBUTIONS USED IN HYDROLOGY	9
2.4. METHODS USED IN SELECTION OF THE BEST DISTRIBUTION	12
2.4.1. Moments and L-moments Diagrams	13
2.4.2. Chi-Square Test	14
2.4.3. Anderson-Darling Test	15
2.4.4. Kolmogorov-Smirnov Test	16
2.4.5. Akaike Information Criterion	17
2.4.6. Bayesian Information Criterion	17
2.5. REGIONAL ANALYSIS	18
2.5.1. Cluster Analysis	19
2.5.2. Homogeneous Region	20
2.5.3. Index Flood Method	21

2.5.4. Station-year Method	22
CHAPTER 3: REGIONALIZATION METHODOLOGY	
3.1. INTRODUCTION	24
3.2. SOFTWARE USED IN THE ANALYSIS	24
3.3. SELECTION OF THE BEST REGIONAL STATISTICAL DISTRIBU	JTION
	25
3.3.1. Log-normal Distribution	25
3.3.2. Gamma Distribution	26
3.3.3. Generalized Extreme Value (GEV) Distribution	27
3.3.4. Gumbel Distribution	29
3.3.5. Pearson Distribution	30
3.3.6. Pareto Distribution	32
3.3.7. Selection Criterion	33
3.3.7.1. AIC and BIC	33
3.3.7.2. Moment Ratio Diagrams	34
3.4. REGIONAL ANALYSIS	35
3.4.1. Formation of Regions	36
3.4.2. Regional Homogeneity Test	37
3.4.3. Regionalization Using Index Flood Method	38
3.4.4. Station Year Analysis	39
3.4.5. Anderson Darling Test	39
CHAPTER 4: STUDY AREA	
4.1. INTRODUCTION	41
4.2. DATA COLLECTION	41
4.3. DATA OVERLAPPING	43
4.3. DATA PROCESSING	43
CHAPTER 5 RESULTS AND DISCUSSIONS	
5.1. INTRODUCTION	52
5.2. SELECTION OF THE BEST STATISTICAL DISTRIBUTION	52

5.3. RESULTS OF REGION FORMATION	55
5.4. RESULTS OF STATION-YEAR FREQUENCY ANALYSIS	60
5.5. GROWTH CURVE VALUE	62
5.6. CONTOUR MAPS FOR RAINFALL AT VARIOUS RETURN PERIO	DS63
5.7. DISCUSSION	68
5.7.1. Regions of Homogeneous Maximum Rainfall	68
5.7.2. Reducing uncertainties in choosing of the fitting distribution	69
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS	
6.1. SUMMARY	71
6.2. CONCLUSIONS	72
	74
6.3. RECOMMENDATIONS	/ +
6.3. RECOMMENDATIONS	
	76
REFERENCES	76 87

List of Tables

Table 4.1	Final number of stations within the study	42
Table 4.2	Stations initial statistical values	44
Table 5.1	Ranking of the eight distributions using AIC and BIC at each province	53
Table 5.2	Number of stations within each homogeneous group with their corresponding p-values	57
Table 5.3	Growth curves values and ratios of the various homogened	

List of Figures

Figure 3.1:	Log-Normal Density Functions with Identical Parameter μ but Differing Parameters σ
Figure 3.2:	Gamma Density Functions with Different Parameter <i>K</i> and <i>θ</i>
Figure 3.3:	GEV Density Functions With $\mu = 0$ and $\sigma = 1$ 28
Figure 3.4:	Gumbel Distribution Functions for Different a values and b = 029
Figure 3.5:	Pearson Distribution Functions for Different Values of β_1 and β_2
Figure 3.6:	Pareto Type I for Various α Values32
Figure 4.1:	Locations of the Selected 269 Rainfall Stations43
Figure 5.1:	Ordinary Moment's Ratio Diagram between Cs (Skewness) and Ck (Kurtosis) for All Individual Stations54
Figure 5.2:	L-Moment's Ratio Diagram between L-Cs (Skewness) and L-Ck (Kurtosis) for All Individual Stations55
Figure 5.3:	6 Sub-Divisions Groups Trial (6 Regions)57
Figure 5.4:	13 Sub-Divisions Groups Trial (13 Regions)58
Figure 5.5:	Initial Sub-Divisions Groups (8 Regions)58

Figure 5.6: Final Seven Homogeneous Sub-Divisions Groups59
Figure 5.7: Station-Year Frequency Results for Homogenous Regions 61
Figure 5.8: Rainfall Contour Map for 2yr Return Period in mm65
Figure 5.9: Rainfall Contour Map for 5yr Return Period in mm65
Figure 5.10: Rainfall Contour Map for 10yr Return Period in mm66
Figure 5.11: Rainfall Contour Map for 25yr Return Period in mm66
Figure 5.12: Rainfall Contour Map for 50yr Return Period in mm67
Figure 5.13: Rainfall Contour Map for 100yr Return Period in mm67

Nomenclature

AD Anderson-Darling Criterion
AIC Akaike Information Criterion
BIC Bayesian Information Criterion

C_k Coefficient of Kurtosis
 Cs Coefficient of Skewness
 Cv Coefficient of Variation

GEV Generalized Extreme Value Distribution

GIS Geographic Information System

GOF Goodness of Fit

IDF Intensity, Duration and Frequency

IDW Inverse Distance Weighting

KS Kolmogorov-Smirnov LP III Log-Pearson type 3

MEWA Ministry of Environment, Water and Agriculture PME Presidency of Meteorology and Environment

Abstract

Hydrologists need effective procedures to assist them in predicting the implications related to high rainfall risks, both at gauged and ungauged areas. The first step for any assessment is estimating the rainfall values associated with various return periods in years. This information is obtained using rainfall frequency analysis techniques based on observed maximum daily rainfall values.

The existence of a regional distribution for the rainfall frequency within a certain region is considered as a precious information for the hydrologists to estimate – with confidence – the expected rainfall at high return periods.

The main aim of this research is to determine the regional statistical distribution for various regions in Saudi Arabia.

Saudi Arabia was selected to represent arid regions as it covers a large area of the Arabian Peninsula in addition to the availability of rainfall data compared with other similar countries. The data of 394 rainfall gaging stations were included in the study, which cover all Saudi Arabia in its 13 administrative regions.

The data was analyzed using multiple frequency analysis methods and was subjected to various statistical tests, including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Anderson-Darling Criterion (AD), Station-Year Analysis, and Index Flood Method, in order to determine the best regional statistical distribution and define the homogenous regions using regional analysis.

The study concluded that Saudi Arabia could be sub-divided into seven homogeneous regions and that the Log-Pearson type III distribution was the best model to describe the distribution of the

daily maximum rainfall in these regions. Contour maps for the 2-, 5-, 10-, 25-, 50-, and 100-year rainfall were also produced to predict the rainfall at any point within the Kingdom of Saudi Arabia.

Chapter 1: Introduction

1.1. Background

Designing of different hydraulic structures, especially urban stormwater drainage elements, necessitate conducting statistical analysis to identify the probability of daily maximum rainfall occurrence for durations that vary from several minutes to days. The result of the statistical analysis is usually presented by the IDF curves which is a relation between the rainfall Intensity, Duration and Frequency (Chow 1964).

In order to initiate the elaboration of IDF curves, the daily maximum rainfall series measured on yearly basis are required to carry out the rainfall frequency analysis. This is due to the simple structure of the curves when compared to others peak threshold series (Lang et al., 1999; WMO, 2009a; WMO, 2009b).

One of the key choices in frequency analysis is the selection of the best distribution to fit the yearly extreme rainfall recorded data. However, this step is considered as a challenging task for hydrologists and remains a main uncertainty issue in engineering practice, due to substantial spatial variability of the precipitation maximum values.

Moreover, many probability models were proposed to represent the distribution of maximum yearly records at single station record scale (Chow, 1964; Kite, 1977; Stedinger et al., 1993; Hosking and Wallis, 1997; Rao and Hamed, 2000; WMO, 2009a; Salinas et al., 2014a; 2014b).

Each country/code of practice adopts different distributions as a regional distribution to be used within each country. The Log-