

The Role of CT-Scan Guided Transforaminal Epidural Steroid Injection in Lumbar Radiculopathy

Thesis

Submitted for Partial Fulfillment of Master Degree in **Physical Medicine, Rheumatology & Rehabilitation**

By

Hajed Hani Muhamed Antabli

M.B., B.Ch Faculty of Medicine-Ain Shams University

Under Supervision of

Prof. Dr. Henaz Farouk Khaled

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine-Ain Shams University


Prof. Dr. Hasham Mahmoud Ahmed

Professor of Radiology Faculty of Medicine-Ain Shams University

Ass. Prof. Dr. Eman Ahmed Tawfik

Assistant Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2019

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Henaz Farouk Khaled**, Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine-Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. Hasham**Mahmoud Ahmed, Professor of Radiology, Faculty of

Medicine-Ain Shams University, for his sincere efforts,
fruitful encouragement.

I am deeply thankful to Ass. Prof. Dr. Eman Ahmed Tawfik, Assistant Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine-Ain Shams University, for her great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Hajed Hani Muhamed Antabli

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	10
Introduction	1 -
Aim of the Work	15
Review of Literature	16
Patients and Methods	71
Results	92
Discussion	125
Summary and Conclusion	135
Recommendations	138
References	139
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Duration of symptoms and progn Acute, Sub acute and Chronic back	
Table (2):	Signs of nerve root compression	42
Table (3):	Shows clinical and functional data injection, 1 st visit (45 days) and days)	2^{nd} (90
Table (4):	Comparison between pre-injection and 1 st visit post-injection as regardinical and functional data	rds the
Table (5):	Comparison between 1st visit and 2st regarding symptoms, examination, VAS scoring and questionnaire	clinical l ODI
Table (6):	Comparison between pre-injection and 2 nd visit post-injection as regardinical and functional data	rds the
Table (7):	Comparison between clinical data injection, 1st visit and 2nd visit:	
Table (8):	Comparison between pre-injection $1^{\rm st}$ visit and $2^{\rm nd}$ visit post-inject regards the clinical and functional of	tion as
Table (9):	Correlation between disease duration (VAS Score, ODI Score (%)) Injection, 1st visit (45 days) and 2 (90 days)	$rac{ ext{Before}}{ ext{nd}} ext{ visit}$
Table (10):	Correlation between VAS score ar score before injection, 45 days injection and 90 days post-injection	post-

List of Figures

Fig. No.	Title Page	No.
Figure (1):	The epidural space	18
Figure (2):	The boundaries of an intervertebral foramen	
Figure (3):	The spinal nerves	21
Figure (4):	Thedural sleeve	22
Figure (5):	The ligamentum flavum	24
Figure (6):	Blood supply of the spinal cord	27
Figure (7):	Cutaneous landmarks of the lumbar region	
Figure (8):	SIJ provocative tests	39
Figure (9):	Dermatomes of the lower limb	42
Figure (10):	Traight leg raising test	44
Figure (11):	Femoral nerve stretch test	44
Figure (12):	Oblique view in plain radiograph of the lumbar spine showing the scotty dog appearance	
Figure (13):	Coronal, sagittal, and axial cuts in MRI lumbar spine	
Figure (14):	Inter-Laminar & Trans-Foraminal approaches.	
Figure (15):	Caudal Approach.	69
Figure (16):	Distraction	76
Figure (17):	Thigh thrust	77
Figure (18):	Faber	77
Figure (19):	Compression	78

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (20):	Gaenslen	78
Figure (21):	The Visual analogue scale "VAS"	79
Figure (22):	Oswesrty Disability Index	81
Figure (23):	Cadwell (Sierra Wave)	85
Figure (24):	Identification & Labelling the in path on the skin.	
Figure (25):	Positioning of the needle under guidance.	
Figure (26):	Aspiration to ensure the absence reflux.	
Figure (27):	Injection of the lidocair betamethasone.	
Figure (28):	Comparison between pre-injection and 1 st visit post injection regards of SIJ.	ng pain
Figure (29):	Comparison between pre-injection and 1 st visit post injection reCSLR.	egarding
Figure (30):	Comparison between pre-injection and 1st visit post injection regarding	
Figure (31):	Comparison between pre-injection and 1 st visit post injection regarding score	ing VAS
Figure (32):	Comparison between pre-injection and 1st visit post injection regards	on visit

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (33):	Comparison between 1st visit regarding pain of SIJ.	
Figure (34):	Comparison between 1st visit regarding CSLR	
Figure (35):	Comparison between 1st visit regarding SIJ.	
Figure (36):	Comparison between 1st visit regarding VAS score.	
Figure (37):	Comparison between 1st visit regarding ODI score	
Figure (38):	Comparison between pre-injection regard 2 nd visit post injection regard of SIJ.	arding pain
Figure (39):	Comparison between pre-injection and 2 nd visit post injection CSLR.	regarding
Figure (40):	Comparison between pre-injection regard and 2 nd visit post injection regard	
Figure (41):	Comparison between pre-injection regard 2 nd visit post injection regardscore	arding VAS
Figure (42):	Comparison between pre-injection regrescore	arding ODI
Figure (43):	Comparison between pre-injecti & $2^{ m nd}$ visit regarding pain of SIJ	
Figure (44):	Comparison between pre-injecting 2 nd visit) regarding CSLR	

Tist of Figures cont...

Fig. No.	Title	Page N	V o.
Figure (45):	Comparison between pre-injection, & 2 nd visit regarding SIJ		117
Figure (46):	Comparison between pre-injection, & 2^{nd} visit regarding ODI score		118
Figure (47):	Comparison between pre-injection, & 2^{nd} visit regarding VAS score		118
Figure (48):	Positive correlation between Durat Vas Score before Injection		120
Figure (49):	Positive correlation between Durat ODI Score before Injection		120
Figure (50):	Positive correlation between Durat Vas Score,at 1st visit		121
Figure (51):	Positive correlation between Durat ODI Score at 1st visit		121
Figure (52):	Positive correlation between Durat Vas Score at 2 nd visit		122
Figure (53):	Positive correlation between Durat ODI Score at 2 nd visit		122
Figure (54):	Positive correlation between VA and ODI score before injection		123
Figure (55):	Positive correlation between VA and ODI score 45 days post injection		124
Figure (56):	Positive correlation between VA and ODI score 90 days post-injection		124

Tist of Abbreviations

Abb.	Full term
	. Alanine amino transferase
	. Aspartate amino transferase
	. Blood urea nitrogen
<i>CBC</i>	. Complete blood count
<i>CRP</i>	. Quantitative C reactive protein
<i>CSF</i>	. Cerebrospinal fluid
<i>CSLR</i>	. Contralateral straight raising test
<i>CT</i>	. Computer-assisted tomography
<i>ESR</i>	. Erythrocyte sedimentation rate
FABER	. Flexion, abduction, external rotation
<i>FIB</i>	. Fibrillation potentials
FNS	. Femoral nerve stretch test
<i>HS</i>	. Highly significant
IBM SPSS	. Statistical Package for Social Science
	. Inter-quartile range
<i>MRI</i>	. Magnetic resonance imaging
<i>NS</i>	. Non significant
NSAIDs	. Non-steroidal anti-inflammatory drugs
<i>ODI</i>	. Oswestry Low Back Pain Disability
	Question naire
PLA2	. Phospholipase A2
<i>PSW</i>	. Positive sharp waves
S	. Significant
<i>SIJ</i>	. Sacroiliac joints
<i>SLR</i>	. Straight leg raising test
<i>SNAP</i>	. Sensory nerve action potential
SSEPs	. Somatosensory evoked potentials
<i>TFESI</i>	. Transforaminal epidural steroid injections
	. Visual analogue scale

Introduction

umbar radiculopathy is a common clinical condition. An epidemiological review noted lifetime prevalence estimates ranging from 12.2% to 43% and annual prevalence ranging from 2.2% to 34% (*Konstantinou and Dunn, 2008*). Although the natural history is generally favorable, patients with radicular pain tend to have poorer outcomes, consume more health care resources, and have greater disability than patients with purely axial back pain (*Kaufmann et al., 2013*). The pathophysiology of radicular pain likely involves both mechanical nerve compression and an inflammatory response, mediated by inflammatory cytokines (*Mulleman et al., 2006*).

Epidural injection of medications for management of low back pain and lower extremity pain was introduced in 1901 by *Cathelin (2000)*, *Pasqier and Leri (2000)* and *Sicard (2000)*. The earliest technique for epidural steroids injection was the caudal approach, but it didn't gain international universal application until 1925, when *Viner (2000)* popularized its use for treating sciatica where he used procaine, Ringer's solution and saline *(Ogoke, 2000)*.

The objective of an epidural steroid injection is to deliver corticosteroids close to the site of pathology, presumably into an inflammed nerve root resulting in a much higher local concentration of steroids in the target site (*Dooley et al.*, 1988; Stanley et al., 1990). The epidurally administered steroids

reduce inflammation by inhibiting the synthesis and/or release of a number of pro-inflammatory mediators and also causing reversible local anesthetic effect (*Pasqualucci et al.*, 2007).

Numerous reports of effectiveness of epidural steroid injections have varied in their response rates from 18% to 90%. Surprisingly, most controlled studies involving epidural steroid injections were performed without fluoroscopic guidance, whereas few uncontrolled open-ended clinical trials used it to ensure delivering the injectate into at least the epidural space if not to the target site. The major cause of disparity proposed is technical error which includes sub-optimal placement or nonplacement of the needle in the correct position near the target nerve route leading to the failure of delivery of steroids to the target site (Manchikanti et al., 2010; Roberts et al., 2009).

Epidural drug injections in the lumbar spine can be delivered by many approaches including: interlaminar, caudal & transforaminal approaches. The interlaminar approach was considered at first to be the preferable route as it is directed more closely to the assumed site of pathology than the caudal approach thus facilitating the delivery of the injectate to its target site using smaller volumes of medications (Manchikanti et al., 2010; Roberts et al., 2009). However, it has some disadvantages such as extra-dural placement of the needle (which may go unrecognized without CT-Scan guidance) and the discriminatory cranial flow of the solution in the epidural space. The use of this technique results in deposition of

medication in the posterior epidural space. On the contrary, disc/nerve root pathology occurs in the anterior epidural space (Rados et al., 2011). In addition, various studies reported the failure of the interlaminar approach to produce statistically significant clinical improvements (Fredman et al., 1999; Manchikanti et al., 2010).

Transforaminal epidural steroid injections (TFESI) have emerged as an alternative to both interlaminar and caudal injections. Some reports mentioned the use of this approach for epidural drug injections, such as *Robecchi and Capra* (1907) in 1952 in the Italian literature, when they performed a periradicular injection of hydrocortisone on the first sacral route and reported relief of lumbar and sciatic pain in a female patient, then (Lievre et al., 1953) and colleagues in the French literature in 1953 reported transforaminal injection of steroids on the level of the first sacral route (Nelson and Landau, 2001). Since then, transforaminal epidural injection has been widely used as it is considered as an effective mean for the management of many cases of low back pain and lower extremity pain (Manchikanti et al., 1999).

The major advantage of transforaminal approach for therapeutic injections is that it ensures that the injected medications incorporates all the sites where the pathology can affect the nerve, which extends from the disc level in the subarticular zone to the extraforaminal zone, including the ventral epidural space (Manchikanti et al., 2010). Despite this

major advantage, considerable controversy continues surround the relative efficacy of the different types of epidural steroid injection, its indications, selection criteria, and its costeffectiveness (Wilkinson and Cohen, 2013).

AIM OF THE WORK

The objective of this study was to assess the immediate and short-term effects of transforaminal epidural steroid injections in patients with lumbosacral radiculopathy.