

Preparation and characterization of polysaccharides based hybrid materials for wastewater treatment.

A Thesis

To The Chemistry Department, Faculty of Science, Ain-Shams University

For The PhD. in Chemistry

Submitted by

Hazem Hassan Ragab Mohammed

M.Sc.-Chemistry, Faculty of Science, Benha University, 2016

Supervisors

Prof. Dr. Ahmed Kamel Elziaty

Professor of Organic Chemistry
Faculty of Science - Ain-Shams University

Prof. Dr. Mohamed M. El-Sakhawy

Professor of Paper and Cellulose Chemistry National Research Center, Egypt

Ass.Prof. Ahmed Salama Mohamed

Ass.Professor Paper and Cellulose Chemistry National Research Center, Egypt

> Faculty of Science Ain Shams University 2019

Preparation and characterization of polysaccharides based hybrid materials for wastewater treatment.

A Thesis For The PhD. in Chemistry Submitted by

Hazem Hassan Ragab Mohammed

THESIS ADVISORS

APPROVAL

Prof. Dr. Ahmed Kamel Elziaty

Professor of Organic chemistry Faculty of Science - Ain-Shams University

Prof. Dr. Mohamed M.El-Sakhawy

Professor of Paper and Cellulose Chemistry National Research Center, Egypt

Ass.Prof. Ahmed Salama Mohamed

Ass.Professor of Paper and Cellulose Chemistry National Research Center, Egypt

> Head of Chemistry Department Prof. Dr. Ibrahim Hosseini Ali Bader

Preparation and characterization of polysaccharides based hybrid materials for wastewater treatment.

A Thesis For The PhD. in Chemistry Submitted by

Hazem Hassan Ragab Mohammed

The Referees

Name APPROVAL

Prof. Dr. Ahmed Kamel Elziaty

Professor of Organic Chemistry
Faculty of Science - Ain Shams University

Prof. Dr. Adel Abdulhady Nassar

Professor of Organic Chemistry Faculty of Science - Menofia University

Prof. Dr. Samaha Sayed Hussain

Professor of Chemistry – Metrology of Chemistry and Textile National institute for standards, Egypt

Prof. Dr. Mohamed M.El-Sakhawy

Professor of Paper and Cellulose Chemistry National Research Center, Egypt

> Head of Chemistry Department Prof. Dr. Ibrahim Hosseini Ali Bader

بسم الله الرحمن الرحيم الله الرحيم الله أخْرَجَكُم مِن بُطُونِ أُمَّهَاتِكُمْ لَا تَعْلَمُونَ شَيْئًا وَجَعَلَ لَكُمُ السَّمْعَ وَالْأَبْصَارَ وَالْأَفْئِدَةَ لَعَلَّكُمْ تَشْكُرُون النحل (٨٧)

CONTENTS

CONTENTS

Subject	
PUBLICATIONS	
I. ACKNOWLEDGMENT	I
II. LIST OF TABLES	III
III. LIST OF FIGURES	V
VI. ABSTRACT	VIII
ENGLISH SUMMARY	XIV
AIM OF THE WORK	1
INTRODUCTION.	
1. Polysaccharides	
1.1. Chitosan	3
1.1.1 Chitosan-silica nanocomposite	11
1.1.2 Chitosan with metal oxide nano particles	14
1.2 Cellulose	16
1.2.1 TEMPO cellulose	19
1.3. Treatment of dyes bearing wastewater	23
1.3.1. Dyes	25
1.3.2. Decolorization techniques	29
1.3.2.1. Adsorption	31

1.3.2.2. Advanced oxidation processes	
RESULTS AND DISCUSSION	
1.1. Preparation of chitosan/silica	
1.2 Preparation of chitosan/silica/Metal oxide	39
2.1 FT-IR spectra	42
2.2 SEM and TEM analysis.	44
2.3. XRD	46
2.4. Thermal analysis	48
3. Adsorption properties of MB	54
3.1. Effect of contact time	56
3.2. Effect of MB concentration	58
3.3. COD studies	65
3.4. Antibacterial Activity	68
1.1. Preparation of TEMPO-Cellulose	71
1.2. Preparation of TEMPO-CNF/ZnO	73
2.1. IR spectra	74
2.2. TEM and SEM analysis	76
2.3. XRD	78
2.4. TGA analysis	78
3. Photocatalytic Degradation of MB using TEMPO-CNF/ZnO nanocomposite.	80

3.1. Optical Properties	
3.2. Antimicrobial Activity	89
EXPERIMENTAL	
1.Materials	93
2. Synthesis and procedure	
3. Characterization	99
4. Application of synthesized compounds	100
REFERENCES	
ARABIC SYMMARY	

II. LIST OF TABLES

LIST OF TABLES

Table	Title	Page
1	The Kinetic parameters of chitosan, chitosan/silica, chitosan/silica/Zinc oxide and chitosan/silica/Fe ₃ O ₄ by Coats Redfern program.	52
2	The Kinetic Parameters of chitosan, chitosan/silica, chitosan/silica/Zinc oxide and chitosan/silica/Fe ₃ O ₄ by Horowitz–Metzger program.	53
3	Kinetic parameters for MB adsorption by chitosan/silica/ZnO nanocomposite.	61
4	Kinetic parameters for MB adsorption by chitosan/silica/Fe ₃ O ₄ nanocomposite.	61
5	Parameters for MB adsorption by chitosan/silica/ZnO nanocomposite according to different equilibrium models.	63
6	Parameters for MB adsorption by chitosan/silica/Fe ₃ O ₄ nano composite according to different equilibrium models.	63
7	Comparison of methylene blue uptake with other adsorbents	67
8	The antibacterial activity of chitosan and chitosan/silica/ZnO	68
9	The antibacterial activity of chitosan and chitosan/silica/ Fe ₃ O ₄	69
10	Anti-microbial activity of the synthesized TEMPO-CNF (T) and TEMPO-CNF/ZnO (Zt) nanocomposites	90
11	Comparison of Photocatalytic degradation of methylene blue dye by other photocatalyst	92
12	Specification of Chitosan	93

LIST OF TABLES

Table	Title	Page
13	Specification of TEOS	93
14	Specification of Cellulose	94
15	Specification of Methylene blue dye	95

III. LIST OF FIGURES

LIST OF FIGURES

Figure	Title	Page
1	Chemical structures of chitin	2
2	Chemical structures of chitosan	3
3	Scheme of de-acetylation process of Chitin to form Chitosan	4
4	Scheme for Synthesis of EDTA-Chitosan	6
5	Scheme for Synthesis of Chitosan-graft Polyaniline Copolymers	7
6	Scheme of Chitosan cross-linking with glutaraldehyde	8
7	Scheme of Chitosan cross-linking with epichlorohydrin	9
8	Scheme of chitosan cross-linking with sodium tripolyphosphate	10
9	Scheme for preparation of chitosan/silica hybrid	12
10	Scheme of interaction between chitosan and silica	13
11	Structure of EDTA-functionalized chitosan–silica	14
12	Structures of cellulose	17
13	Scheme Chemical reactions of nano cellulose	18
14	Chemical structures of 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)	19
15	Scheme of TEMPO-mediated oxidation mechanism with primary alcohols in a mildly alkaline environment	20
16	Scheme of TEMPO mediated oxidation of cellulose composite	21

LIST OF FIGURES

Figure	Title	Page
17	Chemical structures of basic (cationic) dyes	25
18	localization of the positive charge at an ammonium group	26
19	Delocalization of positive charge	27
20	Chemical structure of Methylene blue (MB)	28
21	The redox reaction of Methylene blue	29
22	Illustration of adsorption process	32
23	Solar irridation	36
24	Scheme of Chitosan/Silica/ZnO synthesized and application	40
25	Scheme of Chitosan/Silica/Fe ₃ O ₄ synthesized and application	41
26	The FT-IR spectra of Chitosan (A), Chitosan/Silica hybrid (B), Chitosan/Silica/Zinc oxide (C) and Chitosan/Silica/Iron oxide hybrid (D).	43
27	SEM of Chitosan/Silica/Zinc oxide nanocomposite	44
28	SEM and TEM of Chitosan/Silica/Fe ₃ O ₄ nanocomposite	45
29	XRD patterns of Chitosan/Silica (A), Chitosan/Silica/Zinc oxide nanocomposite (B) and Chitosan/Silica/Iron oxide nanocomposite.	47
30	The TGA curves of Chitosan, Chitosan/Silica, Chitosan/Silica/Zinc oxide and Chitosan/Silica/Iron oxide	50
31	Effect of the pH values on the adsorption capacities of Chitosan/Silica, Chitosan/Silica/ZnO and Chitosan/Silica/Fe ₃ O ₄ nanocomposite for MB	55

LIST OF FIGURES

Figure	Title	Page
32	Effect of the adsorption time on adsorption capacity of Chitosan/Silica, Chitosan/Silica/ZnO and Chitosan/Silica/Fe ₃ O ₄	57
33	Effect of the initial MB concentration on adsorption capacity of Chitosan/Silica Chitosan/Silica/ZnO and Chitosan/Silica/Fe ₃ O ₄	59
34	Effect of pH on COD of chitosan/silica, chitosan/silica/ZnO and chitosan/silica/Fe ₃ O ₄	65
35		66
36	Scheme for synthesis of TEMPO-CNF	72
37	Immobilization of ZnO to TEMPO-CNF	73
38	The FT-IR spectra of TEMPO-CNF and TEMPO-CNF/ZnO	75
39	TEM analysis of TEMPO-CNF	76
40	SEM of TEMPO-CNF/ZnO nanocomposite	77
41	XRD patterns of TEMPO-CNF/ZnO nanocomposite	78
42	The TGA curves of TEMPO-CNF and TEMPO-CNF/ZnO	79
43	Adsorption and degradation contribute to lower MB concentration	81
44	Effect of pH on photocatalytic degradation of MB	82
45	Effect of the time on photocatalytic degradation of MB	83
46	Photocatalytic degradation of MB by TEMPO-CNF/ZnO	83
47	Mechanism of photocatalytic degredation of MB by TEMPO-CNF/ZnO	85