

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The role of hepcidin as a biomarker for iron status in patients with chronic kidney disease (stage IV and V) with negative virology

A Thesis

Submitted for partial fulfillment of Master degree in Internal Medicine

By

Ahmed Mahmoud Ibraheem

M.B,B.CH-(2012)

Under Supervision of

Prof. Dr. Magdy Mohamed El Sharkawy

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Prof. Dr. Heba Wahid Elsaid

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Lina Essam Khedr

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2020

Acknowledgments

First and foremost, I feel always indebted to Allah, the **Most Beneficent** and **Merciful** who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, **Prof. Dr. Magdy Mohamed El Sharkawy**, Professor of Internal Medicine
and Nephrology, Faculty of Medicine, Ain Shams University,
for his valuable guidance and expert supervision, in addition to
his great deal of support and encouragement. I really have the
honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Prof. Dr. Heba Wahid Elsaid,** Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Lina Essam Khedr,** Lecturer of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for guiding me throughout this work and for granting me much of her time. I greatly appreciate her efforts.

Special thanks to my **Parents** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Chronic Kidney Disease	4
Iron Metabolism and Homeostasis	15
Hepcidin	22
Anemia of Chronic Kidney Diseases	31
Patients and Methods	40
Results	44
Discussion	53
Summary	62
Conclusion and recommendations	65
References	66
Arabic Summay	······

List of Abbreviations

Abbr. Full-term

AA : Amino-acid

CERA : Continuous erythropoiesis receptor activator

CKD : Chronic kidney disease

DMT1 : Divalent metal transporter 1

ER : Endoplasmic reticulum

FGF-23: Fibroblast growth factor-23

FPT: Ferroprotein

GFR : Glomerular filtration rate

HAMP: Direct transcriptional suppression of hepcidin gene

HCV: Hepatitis C virus

HO-1 : Haem oxygenase-1

IRE : Iron-responsive elements

IRP : Iron-regulatory proteins

IV : Intravenous

KDIGO: Kidney Disease: Improving Global Outcomes

Lrp1 : Lipoprotein receptor-related protein-1

NTBI : Non-transferring bound iron

RBCs : Red blood cells

rhEPO : Recombinant human erythropoietin

SC : Subcutaneous

SD : Standard deviation

SPSS : Statistical package for social science

Tf : Transferrin

TfR : Transferrin receptors

TIBC: Total iron-binding capacity

α2M : α2-macroglobulin

List of Tables

Table No	o. Title Pag	ge No.
Table (1):	Criteria of CKD, according to internatio guidelines	
Table (2):	Classification of CKD, according international guidelines	
Table (3):	Demographic data distribution of the stugroup.	
Table (4):	Aetiology of renal disease, co-morbidit and HCV PCR distribution of the stugroup.	ıdy
Table (5):	All parameters descriptive of the stugroup.	•
Table (6):	Stage descriptive of the study group	47
Table (7):	Comparison between stage 4 and stage according to age and laboratory data	
Table (8):	Correlation between serum hepcidin wage and laboratory data	

List of Figures

Figure No.	Title Pag	ge No.
Figure (1):	Symptoms and signs of CKD	11
_	Regulation of systemic iron metaboli and hepcidin expression	
_	Healthy kidneys manufacture a hormonamed as EPO	
_	Pie chart sex distribution of the stugroup.	•
_	Pie chart stage descriptive of the stugroup.	•
•	Bar chart between stage 4 and stage according to iron and serum hepcidin	
•	Bar chart between stage 4 and stage according to TIBC and ferritin	
_	Scatter plot between serum hepcidin a iron.	
_	Scatter plot between serum hepcidin a ferritin.	
	Scatter plot between serum hepcidin a CRP	
•	Scatter plot between serum hepcidin a	

Abstract

Background: Anemia is a severe complication of chronic kidney disease (CKD) that is seen in more than 80% of patients with impaired renal function. Hepcidin, an acute phase reactant protein produced in the liver, is a key regulator of iron homeostasis. Aim of the Work: to assess hepcidin level in 45 non-dialysis patients (CKD stage IV and V with negative virology) and its relation to iron parameters. Patients and Methods: A cross sectional study was conducted at Nasser Institute for Treatment and Research on 45 patients with chronic kidney disease stage IV and V. All patients included in this study were subjected to the following: Careful history taking, full clinical examination and proper laboratory investigations. **Results:** A statistically significant difference was found between CKD stage 4 and stage 5 according to Hb., iron, TIBC, Frerretin, serum and CRP. Also, there was a significant positive correlation of serum hepcidin with serum ferretin and hsCRP, while Hb and iron were significantly negatively correlated with hepcidin. We found statistically significant decrease in Hb level, serum Iron level, and TIBC in CKD stage 5 less than stage 4. We found statistically significant increase in Hepcidin level, serum ferritin, and hsCRP in CKD stage 5 more than stage 4. We found statistically significant Positive correlation between serum hepcidin with serum ferretin among patients with CKD stage 4 and 5. We found statistically significant Positive correlation between serum hepcidin with hsCRP among patients with CKD stage 4 and 5. Conclusion: Elevated hepcidin can predict the need for parenteral iron to overcome hepcidin-mediated ironrestricted erythropoiesis and need for relatively higher rhEPO doses to suppress hepcidin in CKD patients with negative viral markers.

Key words: hepcidin, iron status, chronic kidney disease, negative virology

Introduction

A nemia is a severe complication of chronic kidney disease (CKD) that is seen in more than 80% of patients with impaired renal function (*Simon and Nakhoul*, 2016).

Although there are many mechanisms involved in the pathogenesis of anemia of renal disease, the primary cause is the inadequate production of erythropoietin by the damaged kidneys (*Hasan et al.*, 2017).

Adequate iron stores are essential for achieving maximum benefit from erythropoietic agents, such as recombinant human erythropoietin (rhEPO) or darbepoetin alfa. Decreased iron stores or decreased availability of iron are the most common reasons for resistance to the effect of these agents (*Jelkmann*, 2013).

Hepcidin, an acute phase reactant protein produced in the liver, is a key regulator of iron homeostasis. Hepcidin inhibits intestinal iron absorption and iron release from macrophages and hepatocytes. Because hepcidin productions increased by inflammation, and high hepcidin concentrations limit iron availability for erythropoiesis, hepcidin likely plays a major role in the anemia of inflammation and rhEPO resistance (*Singh*, 2007). Serum levels of prohepcidin, the precursor molecule of hepcidin, were found lower in patients with chronic HCV infection (*Ganz and Nemeth*, 2012).

Because of its renal elimination and regulation by inflammation, it is possible that progressive renal insufficiency leads to altered hepcidin metabolism, subsequently affecting enteric absorption of iron and the availability of iron stores (Ashby et al., 2017).

Several studies have shown elevated hepcidin levels in CKD, and it is now considered to be the critical link between inflammation and anemia in CKD patients (*Jairam et al.*, 2010).

Treatment with agents that lower serum hepcidin levels or inhibit its actions may be an effective strategy for restoring normal iron homeostasis and improving anemia in CKD patients (*Tsuchiya & Nitta*, 2013).

Aim of the Work

The aim of this work is to assess hepcidin level in non-dialysis patients (CKD stage IV & V) with negative virology and its relation to iron parameters.