

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Faculty of Science Chemistry Department

Synthesis, Characterization and Utility of Novel Organic Antioxidants for Some Rubber formulations

Thesis Submitted by

Ayman Mohammed Mohammed Ali Hassan

B.Sc. (Chemistry) 2012

M.Sc. (Chemistry) 2017

For the requirement of Ph.D. Degree of Science in Chemistry

Thesis Advisors

Prof. Dr. Hamed Ahmed Younes Derbala.

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Ahmed Kamel El-Ziaty.

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Galal Abd-El megid El-Sayed.

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Ahmed Ismail Hussain.

Professor of polymer technology, National Research Centre

Dr. Emad Saad Shafik.

Researcher of polymer technology, National Research Centre

To
Department of chemistry
Faculty of Science
Ain Shams University
Cairo, Egypt
2020

Faculty of Science Chemistry Department

Synthesis, Characterization and Utility of Novel Organic Antioxidants for Some Rubber Formulations

Thesis Submitted by

Ayman Mohammed Mohammed Ali Hassan

(B. Sc. 2012) (M. Sc. 2017) For Ph.D. Degree in Chemistry

Thesis Advisors	Approved
Prof.Dr. Hamed Ahmed Younes Derbala.	
Professor of Organic Chemistry, Faculty of Science University	e, Ain Shams
Prof.Dr. Ahmed Kamel El-Ziaty.	
Professor of Organic Chemistry, Faculty of Science University	e, Ain Shams
Prof.Dr. Galal Abd-El megid El-Sayed.	
Professor of Organic Chemistry, Faculty of Science University	e, Ain Shams
Prof.Dr. Ahmed Ismail Hussain.	
Professor of polymer technology, National Research	ch Centre
Dr. Emad Saad Shafik.	
Researcher of polymer technology, National Research	arch Centre

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Faculty of Science Chemistry Department

Approval Sheet for Submission Title of Ph.D. Thesis

Synthesis, Characterization and Utility of Novel Organic Antioxidants for Some Rubber formulations

Presented by

Ayman Mohammed Mohammed Ali Hassan

Examiner committee

Prof.Dr. Hamed Ahmed Younes Derbala.	
Professor of Organic Chemistry, Faculty of Science, University	Ain Shams
Prof.Dr. Ahmed Ismail Hussain.	
Professor of polymer technology, National Research	Centre
Prof.Dr. Fathy Mohammed Ahmed Abdelrazek	
Professor of Organic Chemistry, Faculty of Science,	Cairo University
Prof.Dr. Mostafa Mohammed Mohammed Ismail	
Professor of Organic Chemistry, Faculty of Educatio	n, Ain Shams

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Acknowledgement

My sincere prayers and thanks to **Allah** who has given me the knowledge, strength and ability to complete this research successfully.

Present thesis has been carried out under the guidance and constant supervision of honorable "Prof. Dr. Ahmed Ismail" and "Prof. Dr. Hamed Derbala" who made their inspiration and perpetual interest throughout this investigation in spite of their busy schedule made this work a reality.

I would like to render my warmest thanks to my supervisor, "Dr. Emad Saad", who made this work possible. His friendly guidance and expert advice have been invaluable throughout all stages of the work.

It is my proud, privilege and duty to express my sincere thanks and gratitude to "Prof. Dr. Galal Abd-Elmegid" and "Prof. Dr. Ahmed K. El-ziaty" for the kind permission they given to me to complete this research by extending and providing all necessary facilities.

Also, I express my deepest gratitude to all members of my family for their continuous support and constant encouragement throughout the period of this work. As it happens that words run out in some situations when one is thankful and sincerely wishes to express one is feeling of gratitude towards someone. The same thing is happening with me.

Aim of work:

The presence of carbon-carbon double bonds in an organic compound leads to rubber materials susceptible to attack by oxygen and ozone, and to thermal degradation. Traditionally, acrylonitrile butadiene rubber (NBR) suffers from oxidative degradation by formation of free radicals along the polymer chains.

To delay this phenomenon for nitrile rubber, herein, the author was inspired to prepare 2-alkylbenzimidazole derivatives, and benzotriazole to be used as novel organic antioxidants for NBR. These antioxidants were characterized using FT-IR, ¹H-NMR, and melting points.

These novel antioxidants have been incorporated into NBR matrix at various concentrations and their activities were compared to a commercial antioxidant (TMQ) of the same concentrations. In addition, two different types of fillers were used in Nitrile matrix as silica and carbon black (HAF).

Further, the activities of these antioxidants have been evaluated by studying their effects on the physico-mechanical and electrical properties for nitrile rubber.

Abstract:

The present work is devoted to the preparation of novel different aromatic amine moieties and evaluation of their activity as antioxidants for acrylonitrile-butadiene rubber NBR.

In the first part, 2-propyl-, and 2-heptyl-, 1H-benzo[d]imidazole (3a,b) were prepared by condensation reaction of o-phenylenediamine (1) with *n*-butanoic acid (2a) and *n*-octanoic acid (2b), respectively. The prepared products were characterized by FT-IR, ¹H-NMR spectroscopy and melting points. These products were incorporated into (NBR) composites with two different fillers (Silica and High Abrasion Furnace carbon black "HAF") as antioxidant additives at different concentrations from 1 up to 2 phr as compared to 2,2,4-trimethyl-1,2-dihydroquinoline (TMQ) as a commercial antioxidant. Their effects on the rheometric, physico-mechanical and electrical properties of NBR composites were evaluated. Thermo-oxidative aging was carried out for NBR composites and distribution of the prepared products observed by Scanning Electron Microscope (SEM). Swelling and crosslinking density for NBR vulcanizates were evaluated and thermal gravimetric analysis (TGA) for NBR vulcanizates were also evaluated. The results showed that the prepared products can act as highly efficient antioxidants in acrylonitrile butadiene rubber vulcanizates comparing with commercial antioxidant TMQ and revealed that there was enhancement in mechanical properties of NBR composites that containing the prepared products, as well. The results also illustrated that the optimum ratio from 2-alkyl benzimidazoles incorporated into acrylonitrile butadiene rubber vulcanizates is 1.5 phr if compared with the same ratio from commercial antioxidant (TMQ).

In the second part, IH-benzo[d][1,2,3]triazole (4) as N- heterocyclic compound was prepared by ring closure reaction of diazonium salt of o-phenylenediamine (1) by nitrous acid. FT-IR, ${}^{1}H$ -NMR spectroscopy and melting point confirmed the successful preparation of IH-benzo[d][1,2,3]triazole. The main objective of this study is to investigate the probability of IH-benzo-[d][1,2,3] triazole to be used as a novel antioxidant for (NBR). The prepared product filled in NBR composite with different content starting

from 1 to 2 phr as compared to the commercial antioxidant (TMQ). The mechanical, thermo-oxidative aging and electrical properties of the composites containing the prepared product were compared with those of composites having commercial antioxidant in the same content. Distribution of the antioxidants into composites was observed by (SEM). Swelling and crosslinking density for NBR vulcanizates and (TGA) analysis for NBR vulcanizates were also evaluated. The results revealed that *1H*-benzo-[d][1,2,3]triazole can act as highly efficient antioxidant in acrylonitrile butadiene rubber vulcanizates comparing with commercial antioxidant TMQ and showed that there was enhancement in mechanical properties of NBR composites, as well.

Keywords

2-propyl-IH-benzo[d]imidazole, 2-heptyl-IH-benzo[d]imidazole, IH-benzo[d][1,2,3]triazole, 2,2,4-trimethyl-1,2-dihydroquinoline (TMQ), Antioxidant, Physico-mechanical, Crosslinking density and Electrical properties.

Content:

Рада

	rage
Acknowledgement	
Aim of work	•••••
Abstract	•••••
List of Tables	i
List of Figures	ii
List of Schemes	v
List of Abbreviations	vi
Summary	xi
CHAPTER (1) Introduction	1
1.1. Polymer	1
1.2. Elastomer rubber compounding	2
1.2.1. Elastomer	2
1.2.1.1. Elastomer types	4
1.2.2. Processing aids	8
1.2.2.1. Processing oils	8
1.2.2.2. Plasticizers	9
1.2.2.3. Chemical Peptizers	10
1.2.3. Vulcanizing agents	11
1.2.4. Accelerators	13
1.2.5. Activators	16
1.2.6. Age Resistors	17
1.2.6.1. Antidegradants Types	18
1.2.7. Filler	19
1.2.7.1. Non-reinforcing Fillers	19
1.2.7.1. Reinforcing Fillers	19
1.3. Rubber Degradation	20
1.4. Antioxidants	24
1.4.1. Antioxidant Types	24

1.4.1.1. Primary Antioxidants	25
1.4.1.1. Secondary Antioxidants	26
1.4.2. Mechanism of Action	
1.4.2.1. Mechanism of Hindered phenolic antioxidants	28
1.4.2.2. Mechanism of Aromatic amine antioxidants	29
1.4.3. Factors affecting on Antioxidant activity	32
1.4.3.1. Chemical factors	32
1.4.3.2. Physical effects	33
1.4.4. Rubber antioxidants literature	34
CHAPTER (2) Materials & Experimental Techniques	50
2.1. Materials	
2.1.1. The chemicals that used in the synthesis of novel	
organic antioxidants	50
2.1.2. The materials that used in Rubber formulations	
2.2. Experimental techniques	52
2.2.1. Synthesis and characterization of organic antioxidants	
2.2.1.1. Synthesis and characterization of 2-alkyl	
benzimidazoles	52
2.2.1.2. Synthesis and characterization of benzotriazole	53
2.2.2. Preparation and characterization of NBR composite	es
2.2.2.1. Mixing	54
2.2.2.2. Rheometric study	
2.2.2.3. Vulcanization	59
2.2.2.4. Physico-mechanical properties	59
2.2.2.5. Thermal aging procedure	
2.2.2.6. Determination of swelling in liquids for rubber	
vulcanizates	61
2.2.2.7. Scanning Electron Microscope	62
2.2.2.8. Thermal Gravimetric Analysis (TGA)	
2.2.2.9. Dielectric Measurements	

CHAPTER (3) Results and Discussion 64
3.1. Part (1) Synthesis of 2-Alkylbenzimidazole moiety as a
novel antioxidant and its effect on physico-mechanical
and electrical properties of NBR
3.1.1. Synthesis and Characterization of 2-alkyl
benzimidazoles
3.1.2. Preparation and characterization of NBR vulcanizates
with antioxidants
3.1.2.1. Rheometric and mechanical characteristics for
(NBR / Silica) composite
3.1.2.2. Rheometric and mechanical characteristics for
(NBR / HAF) composite
3.1.2.3. Equilibrium swelling and Crosslinking density for
two NBR composites
3.1.2.4. Thermal gravimetric analysis (TGA) for two
NBR composites
3.1.2.5. Scanning Electron Microscope for two NBR
composites90
3.1.2.6. Dielectric properties for two NBR composites 93
3.2. Part (2). Synthesis and evaluation of another N-hetero-
cyclic compound as antioxidant and its influence on
physico-mechanical and electrical properties of NBR 98
3.2.1. Synthesis and Characterization of benzotriazole 98
3.2.2. Preparation and characterization of NBR vulcanizates
with antioxidants
3.2.2.1. Rheometric and mechanical characteristics for
(NBR / Silica) composite 102
3.2.2.2. Rheometric and mechanical characteristics for
(NBR / HAF) composite 107

Arabic Summary	
Publication	13
References	22
3.2.2.6. Dielectric properties for two NBR composites 11	17
composites 11	16
3.2.2.5. Scanning Electron Microscope for two NBR	
NBR composites	14
3.2.2.4. Thermal gravimetric analysis (TGA) for two	
two NBR composites	12
3.2.2.3. Equilibrium swelling and Crosslinking density f	or

List of Tables

		Page
Table (1.1) (Chemical structures for some synthetic rubber	7
Table (1.2)	Oil Selection Guide for Range of Commercial Elast	omers
,	Ç	9
Table (1.3)	Accelerator for sulfur vulcanization	15
Table (2.1)	NBR / Silica composites formulations	55
Table (2.2)	NBR / HAF composites formulations	56
Table (2.3)	NBR / Silica composites formulations	57
Table (2.4)	NBR / HAF composites formulations	58
Table (3.1)	Rheometer characteristic for NBR/ Silica comp	osites
		75
Table (3.2)	Rheometer characteristic for NBR/HAF compo	osites
		81
Table (3.3)	Equilibrium swelling and Crosslinking densi	ty of
	NBR/Silica composites	87
Table (3.4)	Equilibrium swelling and Crosslinking densi	ty of
	NBR/HAF composites	87
Table (3.5)	Rheometer characteristic for NBR/Silica compo	osites
		102
Table (3.6)	Rheometer characteristic for NBR/ HAF compe	osites
		107
Table (3.7)	Equilibrium swelling and Crosslinking densi	ty of
. ,	NBR/Silica composites	113
Table (3.8)	Equilibrium swelling and Crosslinking densi	ty of
	NBR/HAF composites	113