

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The effect of Epitranscriptomic writer (METTL3) silencing on Hepatocellular carcinoma cell line

Thesis

Submitted for Partial Fulfillment of Master Degree in Medical Biochemistry and Molecular Biology

By Afaf Rabea El sherbeni

M.B., B.CH. Faculty of Medicine, Port Saied University

Under supervision of

Prof. Dr. Hanan Hussien Shehata

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine - Ain Shams University

Prof. Dr. Maivel Heshmat Ghattas

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine- Port Saied University

Dr. Magda Ibrahim Mohamad Ali

Lecturer of Medical Biochemistry and Molecular Biology Faculty of Medicine - Ain Shams University

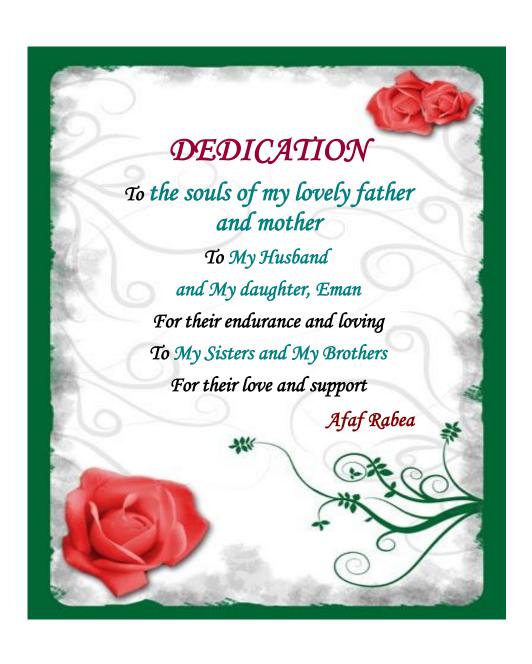
Medical Biochemistry and Molecular Biology Department
Faculty of Medicine
Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgment

First, and foremost, I feel always indebted to **Allah**, The most kind and the most merciful.

Thanks to Allah who lightened my path to become a humble student for a noble profession and granted me the ability to accomplish this work.


Words can never express my hearty thanks and indebtedness to **Prof. Dr. Hanan Hussien Shehata** Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, for her great support and continuous encouragement and guidance to complete this work. It is a great honor to work under her guidance and supervision.

I am deeply indebted to **Prof. Dr. Maivel Heshmat Ghattas** Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Port Saied University, for her kind Supervision, and help throughout the whole work.

My deepest appreciation and gratitude to **Dr. Magda Ibrahim**Mohamad Ali, Assistant Professor of Medical biochemistry and Molecular biology, Faculty of Medicine, Ain Shams University, for her kind support and care, I appreciate here patience and objectivity in tolerating the revision of this study. There is no aspect of this work in which she was not involved by her own rules.

I would like to express my best regards and thanks to all my colleagues at the Medical Biochemistry and Molecular Biology department for their help and support.

Words can never express my Sincere thanks to my Family for their continuous encouragement, generous support, and love.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vi
Introduction	1
Aim of the Work	3
Review of Literature	
Hepatocellular Carcinoma	4
Epitranscriptomics	27
RNA Interference	34
Materials & Methods	39
Results	75
Discussion	96
Summary	106
Conclusion	
Recommendations	111
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Child-Pugh Classification	
Table (2):	UICC TNM classification of hepatocarcinoma	
Table (3):	Stage Groupings of TNM Staging Sys	stem13
Table (4):	Standard concentrations of viable cell suspension were prepared in 1 culture medium.	00μl of
Table (5):	Genomic DNA elimination reaction	
Table (6):	Reverse-transcription master mix	67
Table (7):	Sequences of primers	
Table (8):	Reaction Mix for QuantiTect SYBR PCR Kit	
Table (9):	Cycling Conditions of QuantiTect Green PCR.	SYBR
Table (10):	Number of viable HepG2 cells a percentage of their viability coun Trypan Blue exclusion test in un HepG2 cells and mock HepG2 cells	ted by treated
Table (11):	Viable cell count detected by Trypa exclusion method in different Hepogroups	an blue G2 cell
Table (12):		an blue G2 cell
Table (13):	Number of active proliferative cells k Assay in untreated and mock Hep- lines.	oy MTT G2 cell
Table (14):	Number of HepG2 active proliferation detected by MTT assay in mock and cell lines transfected with siMETTL3	ve cells HepG2

List of Tables Cont.

Table No.	Title	Page No.
Table (15):	METTL3 relative expression by PCR in different HepG2 cell lines	
Table (16):	Effect of <i>METTL3</i> interference on expression of <i>TP53</i> and <i>eEF2</i> in HepG2 cell lines	different
Table (17):	Correlation between the expression the three candidate genes	
Table (18):	Correlation analysis between expression of candidate genes culture results.	and cell

List of Figures

Fig. No.	Title	Page No.
Figure (1):	HCV mechanisms of carcinogenic disease	
Figure (2):	Updated Barcelona Clinic Liver of staging system and treatment strate	
Figure (3):	Cell cycle pathway	18
Figure (4):	DNA methylation in cancer	23
Figure (5):	Role of microRNAs in cancer	25
Figure (6):	Process of m6A modification, removereding	
Figure (7):	Mechanism of RNA interference (RN	IAi)35
Figure (8):	Study's flow chart	39
Figure (9):	In-silico analysis of <i>METTL3</i> exprin HepG2 cell line	
Figure (10):	Snapshots showing METTL3 exprision normal liver tissue	
Figure (11):	Snapshot showing eEF2 expression HepG2	
Figure (12):	Snapshot of eEF2 as a target of methylation	
Figure (13):	Snapshot showing TP53 expression HepG2 cell lines	ion in
Figure (14):	Snapshot showing TP53 as a tar m6A methylation	•
Figure (15):	Cell counting by the hemocytometer	51
Figure (16):	Structures of MTS tetrazolium a formazan product.	
Figure (17):	CellTiter 96® AQueous One Solution Proliferation Standard curve for l	
	cells	60

List of Figures Cont.

Fig. No.	Title	Page	No.
Figure (18):	Microscopic images of cultured Hep		76
Figure (19):	Viable cell count and viability detected by Trypan blue exclusion untreated HepG2 cells and mock ce	test in	78
Figure (20):	Viable cell counts, and viability detected by Trypan blue exclusion different HepG2 cell lines	test in	81
Figure (21):	Mean of active proliferative cell is calculated by MTT test in untreast mock HepG2 cell lines. MTT assay Dimethyl-2-thiazolyl) 2,5-dipher tetrazolium bromide)	ted and y; 3-(4,5 nyl-2H-	83
Figure (22):	Mean number of active proliferation detected by MTT assay in different cell lines	HepG2	84
Figure (23):	Relative expression of <i>METT</i> different HepG2 cell lines		
Figure (24):	Relative expression levels of <i>TP eEF-2</i> in different HepG2 cell lines.		88
Figure (25):	Scatter plots of the correlation of a quantification (RQ) of studied versus each other	genes	90
Figure (26):	Scatter plots of relative quanti (RQ) of <i>METTL3</i> versus cell results	culture	92
Figure (27):	Scatter plots of relative quanti (RQ) of <i>TP53</i> versus cell culture res		93
Figure (28):	Scatter plots of relative quanti (RQ) of <i>eEF2</i> versus cell culture res		94

List of Figures Cont.

Fig. No.	Title	Page No.
Figure (29):	Real time PCR amplification by studied genes in mock HepG2 <i>ACTB</i> was the reference gene	2 cell line.
Figure (30):	Real time PCR amplification bloand <i>eEF2</i> in transfected HepG with siMETTL3. <i>ACTB</i> was the gene.	2 cell line e reference

List of Abbreviations

Abb.	Full term
5'-UTR	5' untranslated regions
aa	
	S-adenosylhomocysteine
-	S-adenosylmethionine
	Alpha fetoprotein
AFP-L1	
AGO2	Argonaute 2
AJCC	American Joint Committee on Cancer
Akt	Protein kinase B
ALKBH5	$\alpha\text{-ketoglutarate-dependent}$ dioxygenase alkB homolog 5
AML	acute myloid leukemia
ANOVA	Analysis of Variance
ARID1A	AT-Rich Interaction Domain 1A
ARNT	aryl hydrocarbon receptor nuclear translocator
ATM	Ataxia telangiectasia mutated
AXIN1	axis inhibition protein 1
BCL9	B-cell /lymphoma 9 protein
BCLC	Barcelona Clinic Liver Cancer staging system
BLAST	Basic Local Alignment Search Tool
CCCH	Cys-Cys-His
CD147	functional lactate transporter
Cdk	Cyclin-dependent kinases
CDKN2A	cyclin-dependent kinase inhibitor 2A
cDNA	Complementary DNA
ceRNAs	competitive endogenous RNAs
CIN	chromosomal instability
	Cyclin dependent kinase inhibitory protein
cirRNA	Circular RNA

List of Abbreviations Cont.

Abb.	Full term
e-mye	. c-myelocytomatosis
•	. copy number alterations
	. Ganosine-Cytocine rich regions of the genome
_	Computed Tomography
CT	
	. Des-γ-Carboxyprothrombin
	Diethyl pyrocarbonate
	deleted in liver cancer 1
DMEM	. Dulbecco's Modified Eagle's Medium
	. DNA methyltransferases
	. Deoxy nucleotide triphosphate
dsDNA	. Double stranded DNA
dsRNA	. Double stranded RNA
<i>E2F</i>	. Eukaryotic transcription factor
E-cadherin	. epithelial cadherin
EDTA	. ethylene diamine tetra acetic acid
eEF2	. Eukaryotic elongation factor2
eIF3	. Eukaryotic initiation factor 3
EZH2	. enhancer of zeste homologue 2
FBS	. fetal bovine serum
FOXO3 gene	. Forkhead box O3 gene
FTO	. fat mass and obesity-associated protein
G0	. Growh phase 0 of cell cycle
G1	. Growth 1 phase
G2/M	. Growth2 / Mitotic phase of cell cycle
	. Golgi Protein-73
GPC3	· -
	. Glycosylphosphatidylinositol
GSCs	. glioblastoma stem cells