

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

APPLICATION OF COLD STERILIZATION TECHNIQUE IN SOFT CHEESE INDUSTRY

By

FARIDA IBRAHIM YOUNIS

B.Sc. Agric. Co-oper., Higher Institute of Agric. Co-operation, Shoubra El-Kheima, 1997M.Sc. Agric. (Dairy Sci. & Tech.), Fac. of Agric., Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Dairy Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

APPLICATION OF COLD STERILIZATION TECHNIQUE IN SOFT CHEESE INDUSTRY

FARIDA IBRAHIM YOUNIS

B.Sc. Agric. Co-oper., Higher Institute of Agric. Co-operation, Shoubra El-Kheima, 1997M.Sc. Agric. (Dairy Sci. & Tech.), Fac. of Agric., Ain Shams University, 2005

This thesis for the Ph.D. degree has been approved by:

Date of examination: / / 2020

Pr	awzy Sayed Ibrahim Osman
Pr	amah Mohamed Shalaby rofessor of Dairy Science and Technology, Faculty of Agriculture, in Shams University
As	sama Ibrahim Elbatawy ssociate Professor of Dairy Science and Technology, Faculty of griculture, Ain Shams University
Pr	tef El – Sayed Fayed

APPLICATION OF COLD STERILIZATION TECHNIQUE IN SOFT CHEESE INDUSTRY

By

FARIDA IBRAHIM YOUNIS

B.Sc. Agric. Co-oper., Higher Institute of Agric. Co-operation, Shoubra El-Kheima, 1997M.Sc. Agric. (Dairy Sci. & Tech.), Fac. of Agric., Ain Shams University, 2005

Under the supervision of:

Dr. Atef El – Sayed Fayed

Professor Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Osama Ibrahim Elbatawy

Associate Professor of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Ahmed Saber EL-Sisi

Head Researches of Dairy Technology, Food Technology Institute, Agriculture Research Center

ABSTRACT

Farida Ibrahim Younis Abd El-Aal: Application of Cold Sterilization Technique in Soft Cheese Industry. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2020.

This research aims to assess the effect of different ozone dozes *versus* heat treatment on some chemical and microbiological properties including pathogens of raw milk, from which two of the most common white soft cheeses in Egypt, namely Domiati and Kariesh cheeses were chosen to be made.

Firstly, raw cow' milk was subjected either to heat treatment at 72°C for 15 sec or ozonation with ascending times every 5 for 30 min using an ozone generating device from the air (Electric Anion Ozonizer, Healthy Life, Model, AK-102, UK) at the rate of 400 mg O₃/h. On the other hand, autoclaved (at 115°C /15 min) skimmed milk was separately inoculated with 0.1% age broth cultured either with *Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella typhimurium* or *Shigella flexneri* exposed to the previous ozonation dozes.

Secondary, Domiati and Kariesh cheeses were made conventionally using the suitable milk for each (Full cream for the former and skimmed milk for the latter) previously either heat treated at 72°C for 15 sec or ozonized for 20 or 30min. Domiati cheese milks were salted (5%), renneted (5ml/10 kg) and the resultant cheeses were pickled for 3months at 25 ± 2 °C. While those of Kariesh cheese were cultured (2% yoghurt starter) and the obtained cheeses were dry salted (2%) and kept at 5 ± 2 °C for 3 weeks.

The obtained results reveal that, the initial log count in raw cow's milk was 7.22, 3.11, 2.18 or 3.15 cfu/ml for total bacterial, yeasts and molds, *Enterobacteriacae* or psychrotrophes, respectively. Those required at least 15, 20, 20 or 30 min ozonation at the rate of 400 mg O₃/h to be

significantly equal or less than those of 4.32, 1.05, <1 or 1.60 of the heat treated one at 72°C for 15 sec towards these microorganisms in order. While, the initial inoculated log counts of certain pathogenic strains including, *Staph. aureus*, *B. cereus E. coli*, *S. typhimurium* and *Sh. flexneri* were 8.3, 8.5, 8.4, 8.2 and 7.4 cfu/ml, in order. The corresponding log count reduced to <1 after 25, 25, 20, 20 and 30 min of ozonation at the same rate, respectively. Neither the heat treatment at 72°C for 15 sec nor the ozonation for any time at the previous rate led to any significant difference neither in the contents of total solids, fat, protein, lactose, ash, titratable acidity (TA) nor the pH value of cow's milk.

In comparison with the other procedure (heating or ozonation) of cheese milk treatment, both cheese varieties contained significantly lower in; dry matter (DM) water soluble nitrogen/total nitrogen (WSN/TN), formol, Schilovich, gumminess values and body and texture as well as total sensory scores but higher in the yield %, protein/DM, TA %, log count of yeasts and molds and flavor score when made from heat treated milk, of which Domiati cheese was also distinguished with higher values of fat/ DM, lactose/DM, ash/DM, hardness and total bacterial log count (TBC) as well as pH, and springiness values lower than those made from ozonized milk. While both of lactose/DM, fat/DM, ash/DM and pH values as well as appearance score of Kariesh cheese were not exhibited any response towards the treatment of skimmed milk prior cheese making. Heat-treated milk Kariesh cheese had lower hardness value and log count of Streptococci and Lactobacilli as well as higher springiness. The flavor score of both types of cheese was higher when their milks were ozonized at the lower dose.

Along the storage period of both cheese varieties, it was associated with significant increments in all compositional components, ripening indices, hardness and gumminess values studied Opposite to the lactose/DM and pH values as well as log count of yeasts and molds, those thereby decreased. Neither by the kind of milk treatment nor the

prolonging of storage period led to any significant change in the salt/moisture content and cohesiveness criterion of both types of cheese. While, springiness value was increased in Domiati cheese but decreased in Kariesh cheese. Neither coliform bacteria, *Staphylococcus aureus* nor *Salmonella typhimurium* was detected in all Domiati and Kariesh cheeses, regardless their milks treatments, whether when fresh or along storage period. During which TBC increased after 1 month and then decreased in Domiati cheese as well as log counts of *Streptococci* and *Lactobacilli* increased in Kariesh cheese. During pickling period, scores of all sensory criteria of Domiati cheeses, opposite to the appearance, increased gradually until the end of the pickling period (3 months). Nevertheless, both of appearance, flavor and total scores of Kariesh cheese lowered while the body and texture score enhanced gradually until the end of the cold storage period (3 weeks).

Finally, this study provides a realistic solution to small laboratories for the manufacture of cheese, which controls most of the processed milk, a new idea applicable to the production of safe food instead of using preservatives, whether authorized or unauthorized, to cover its inability to acquire pasteurization devices in violation of the legislation.

Key words: Ozone, Pathogens, Domiati cheese, Kariesh cheese, Texture profile, Ripening indices.

ACKNOWLEDGMENT

Deepest, greatest and sincere thanks to **ALLAH** the most Merciful, Great and Clement God.

I wish to extend my deepest appreciation and sincere gratitude to **Prof. Dr. Atef El-Sayed Fayed,** Professor of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University for the suggestion as well as initiation of this study, kind attention and greater help provided for the accomplishment of this work and for his efforts and supervising.

I wish to find the words that can help to express my great thanks to **Dr. Osama Ibrahim Batawy**, Associate Professor of Dairy Science and Microbiology, Food Science Department, Faculty of Agriculture, Ain Shams University, for his true guidance, encouragement during study.

Appreciation should be extended to **Dr. Ahmed Saber El-Sisi,** Head of Research, Dairy Technology Research Department, Food Technology Research Institute, Agricultural Research Center, for his fruitful efforts during study.

My special thanks would be expressed for **Dr. Alaa Talaat El-Kady**, Senior Researcher, Horticulture Crops Research Department, Food Technology Research Institute, Agricultural Research Center, for the facilities the ozonizer apparatus.

I would like to thank all stuff members of Food Science Department, Faculty of Agriculture, Ain Shams University as well as Food Technology Research Institute, Agricultural Research Center, Giza.

Thanks also to every one who provided help or advised me to achieve this manuscript.

My deepest thanks to my, husband and all my family, for helping me to achieve this manuscript.

CONTENTS

No.		Page
	LIST OF TABLES	V
	LIST OF FIGURES	VII
	LIST OF ABBREVIATIONS	VIII
I	INTRODUCTION	1
П	REVIEW OF LITERATURE	4
1	Preface	4
2	Generation and physicochemical properties of	
2	ozone	5
2.1.	Solubility of ozone in aqueous phase	6
2.2.	Stability of ozone	7
2.3.	Reactivity of ozone	9
2.3.1	Factors altering reactivity and antimicrobial efficacy	10
2.3.2.	Temperature	11
2.3.3.	pH value	11
2.3.4.	Ozone-consuming compounds	12
2.4.	Kinetics of microbial inactivation by ozone	12
2.4.1.	Cell envelopes	15
2.4.2.	Bacterial spore coats	15
2.4.3.	Enzymes	15
2.4.4.	Nucleic material	16
2.4.5.	Viruses	16
2.5.	Efficacy of ozone	17
2.6.	Inactivation spectrum	17
2.6.1.	Bacteria	17
2.6.2.	Viruses	19
2.6.3.	Mycotoxins	19
2.7.	Health and safety aspects of ozone application	20
3.	Ozone application in food processing	20
3.1	Products tested	20

No.		Page
3.2.	Microorganisms for measuring ozone efficacy	22
4.	Application of ozone in the dairy industry	23
4.1.	Fluid milk	23
4.2.	Concentrated milk	25
4.3.	Powdered milk products	26
4.4.	Cheese and indoor atmosphere in cheese ripening and	
4.4.	storage rooms	27
5.	Most applicable common Egyptian white soft cheeses	32
5.1.	Domiati cheese	32
5.2.	Kariesh cheese	34
III	MATERIALS AND METHODS	36
1	MATERIALS	36
1.1	Liquid cow's milks	36
1.2	Rennet powder	36
1.3	Bacterial starter cultures	36
1.4	Bacterial pathogenic strains	36
1.5	Sodium chloride	36
2	Experimental Procedures	36
2.1	Experience designing of milk ozonation	36
2.2	Survival screening of some pathogenic strains in milk	
	towards different ozonation dozes	37
2.3	Preparation of rennet solution	37
2.4	Preparation of bacterial starter cultures	37
2.5	Preparation of Domiati cheese	37
2.6	Preparation of Kariesh cheese	38
3	ANALYTICAL METHODS	38
3.1	Physiochemical analyses	38
3.1.1	Determination of gross composition contents	38
3.1.2	Determination of salt content	39
3.1.3	Ripening indices	39
3.1.3.1	Determination of titratable acidity percent	39

No.		Page
3.1.3.2	Measurement of pH value	39
3.1.3.3	Determination of water soluble nitrogen	39
3.1.3.4	Determination of Formol number	39
3.1.3.5	Determination of Schilovich index	39
3.2	Texture profile analyses	39
3.3	Microbiological examinations	40
3.3.1	Enumeration of total viable bacterial count	40
3.3.2.	Enumeration of Lactobacilli count	40
3.3.3.	Enumeration of Str. thermophilus count	40
3.3.4.	Enumeration of Enterobacteriaceae count	40
3.3.5.	Enumeration of psychrotrophic bacteria count	40
3.3.6.	Enumeration of Salmonella sp. count	40
3.3.7.	Enumeration of Staphylococci count	40
3.3.8.	Enumeration of Bacillus cereus count	41
3.3.9.	Enumeration of Shiegilla sp. count	41
3.3.10.	Enumeration of Escherichia coli count	41
3.3.11	Enumeration of Coliform count	41
3.3.12.	Enumeration of yeasts and molds count	41
3.4	Organoleptic evaluation	41
3.5	Statistical analysis	42
IV	RESULTS AND DISCUSSION	43
PART I	Effect of ozonation treatment on the cow's milk	
	properties versus pasteurization	43
1	Microbiological quality of cow's milk in relation to	
	ozonation versus conventional heat treatment	43
2	Screening of different ozonation dozes on survival of	
	some pathogenic strains in milk	50
3	Effect of ozonation on chemical properties of cow's	
	milk	55
PART II	Application of ozonation technique in Domiati	
	cheese production	60

No.		Page
1.	Technical and chemical properties of Domiati cheese	60
1.1.	Cheese yield	60
1.2.	Dry matter content	62
1.3.	Fat/dry matter content	63
1.4.	Protein /dry matter content	64
1.5.	Lactose/dry matter content	65
1.6.	Ash/dry matter content	65
1.7.	Salt moisture content	66
2.	Ripening indices of Domiati cheese	69
2.1.	Water soluble nitrogen/ Total nitrogen content	69
2.2.	Titratable acidity content	71
2.3.	pH value	72
2.4.	Formol number	73
2.5.	Schilovich number	74
3.	Texture profile of Domiati cheese	76
3.1.	Hardness	76
3.2.	Cohesiveness	77
3.3.	Gumminess	79
3.4.	Springiness	79
4.	Microbiological quality of Domiati cheese	82
4.1.	Total viable bacterial count	82
4.2.	Yeasts and Moulds count	83
4.3.	Spoilage and pathogenic bacteria	85
5.	Organoleptic attributes of Domiati cheese	87
Part III	Application of ozonation technique in Kariesh	
	cheese production	92
1.	Technical and chemical properties of Kariesh cheese	92
1.1.	Yield of Kariesh cheese	92
1.2.	Dry matter content	92
1.3.	Fat/dry matter content	98
1.4.	Protein /dry matter content	98

No.		Page
1.5.	Lactose/dry matter content	99
1.6.	Ash/dry matter content	99
1.7.	Salt / moisture content	100
2.	Ripening indices of Kariesh cheese	100
2.1.	Water soluble nitrogen/ Total nitrogen content	100
2.2.	Titratable acidity content	101
2.3.	pH value	102
3.	Texture profile of Domiati cheese	105
3.1.	Hardness	105
3.2.	Cohesiveness	107
3.3.	Gumminess	108
3.4.	Springiness	108
4.	Microbiological quality of Kariesh cheese	111
4.1.	Streptococci count	111
4.2.	Lactobacilli count	111
4.3.	Yeasts and Moulds count	113
4.4.	Spoilage and pathogenic bacteria	113
5.	Organoleptic quality of Kariesh cheese	115
V.	SUMMARY AND CONCLUSION	120
VI.	REFERENCES	127
VII.	ARABIC SUMMARY	