

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Musculoskeletal MRI Findings of Haematological Diseases

Thesis
Submitted for partial fullfillment of Master Degree in Radiodiagnosis
Presented by
Pola Ibrahim Said

(M.B.B.C.H)
Faculty of Medicine
Ain Shams University

Supervised by **Prof. Dr. Sameh Mohammed Abdelwahab**

Professor of Radiology Faculty of Medicine Ain Shams University

Dr. Hazem Ibrahim Abdelrahman

Lecturer of Radiology Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2020

First and foremost, I feel always indebted to GOD, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and gratitude to

Prof. Dr. Sameh Mohammed Abd Elwahab

Professor of Radiodiagnosis, Faculty of

Medicine Ain Shams University, for giving me the honor and great advantage of working under his supervision, valuable teaching and the continuous education.

My sincere thanks and utmost appreciation to

Or. Hazem Ibrahim Abd ElRahman

Lecturer of Radiodiagnosis, Faculty of Medicine, Ain

Shams University, for his tremendous assistance,

close supervision and continuous advice during different stages of this

work.

CONTENTS

Subject	Page
List of abbreviations	II
List of tables and figures	III
Introduction and aim of work	1
Review of literature:	
A- Bone marrow anatomy	3
B- MRI of normal bone marrow (pulse sequences)	10
C- MRI of normal bone marrow (anatomic sites)	16
D- Hematological diseases (clinical background and MRI	23
findings)	
Patients and methods	46
Illustrative cases	50
Results and Discussion	65
Summary and conclusion	74
References	76
Arabic summary	82

List of abbreviations	
AVN	Avascular necrosis
DCE	Dynamic contrast enhanced
DFX	Desferoxamine
FSE	Fast spin echo
MRI	Magnetic resonance imaging
MSK	Musculoskeletal
PD	Proton density
SCA	Sickle cell anemia
SE	Spin echo
SI	Signal intensity
STIR	Short tau inversion recovery
TIC	Time intensity curve
WIs	Weighted images

List of tables	
Table 1	Bone marrow cellular and chemical components
Table 2	Normal age-related changes in marrow signal intensity on T1-Weighted MRI sequence

List of figures	
Figure 1	Schematic representation of bone marrow structure
Figure 2	Schematic representation of bone marrow vasculature
Figure 3	Sagittal PD WI showing nutrient artery of bone
Figure 4a	Diagram of developmental transformation of bone marrow in long bones
Figure 4b	Diagram showing conversion of red to yellow marrow
Figure 5	Coronal FSE T2 and fat sat T2 WIs of humerus head
Figure 6	Sagittal T1 WI of cervical spine before and after contrast administration
Figure 7	Sagittal pre, post contrast T1 and STIR WIs of lumbar spine
Figure 8	Normal bone marrow perfusion, time-intensity curves
Figure 9	T1 WIs of lumbar spine in children of different ages

Figure 10	Axial T1 WI of pelvis showing marrow distribution in adult
Figure 11	Coronal T1 WIs of femur in different ages
Figure 12	Coronal T2 WI of the shoulder showing red to yellow marrow conversion
Figure 13	Clinical manifestations of thalassemia syndromes
Figure 14	Diagram of pathophysiology of thalassemia
Figure 15	Coronal T1 and T2 WIs of spine showing hemosiderin deposition in thalassemic patient
Figure 16	Coronal fat sat PD WIs of distal femur in thalassemic patient
Figure 17	Schematic diagram of marrow deposition pattern in thalassemia
Figure 18	Diagram of SCA pathophysiology
Figure 19	Diagram of msk complications of SCA
Figure 20	Sagittal T1 WI of brain showing diploic space widening
Figure 21	Post contrast axial T2 WI of femur in SCA patient
Figure 22	Coronal T1 WI of shoulder in SCA patient
Figure 23	Axial and sagittal gradient images of knee in hemophilia
Figure 24	Sagittal gradient image of the ankle
Figure 25	Coronal T1, T2 and T2 fat sat WIs of knee in hemophilic patient

Figure 26	Sagittal T1, T2 and post contrast T1 WI in ALL patient
Figure 27	Pre and post contrast coronal T1 and T2 of femur in CML patient
Figure 28	Coronal T1 WI of femoral shaft in patient with lymphoma
Figure 29	Coronal T1 and PD WIs of knee in lymphoma
Figure 30	Coronal T1 images of the pelvis in multiple myeloma
Figure 31	Sagittal T1 WI of spine in multiple myeloma
Figure 32	Sagittal T1 WI before and after contrast administration and sagittal STIR WI of spine in multiple myeloma
Figure 33	Illustration of the percentage of patient's ages
Figure 34	Pie chart representing the percentage of patient's diseases
Case 1 (A, B)	MRI both hip joints in thalassemia
Case 2 (A, B)	MRI shoulder in SCA
Case 3 (A, B,	MRI both hip joints in SCA
Case 4 (A, B)	MRI lumbosacral spine in leukemia
Case 5 (A, B)	MRI lumbosacral spine in leukemia
Case 6 (A, B)	MRI whole spine in lymphoma
Case 7 (A, B,	MRI lumbosacral spine in multiple myeloma

INTRODUCTION

INTRODUCTION

Hematopoiesis, the formation of blood cells, starts and exists only in the yolk sac of the fetus for the first 6 weeks. Between the sixth and twentieth weeks of age, the reticuloendothelial system, the liver and spleen, take over the process of blood cell formation. (Murali et al., 2015)

From the sixteenth week hematopoiesis commences in the bone marrow at the same time with the development of bone cavities. From then on, bone marrow remains the primary site for hematopoiesis. (Burdiles et al., 2009)

Hematologic diseases comprise a set of prevalent yet clinically diverse diseases that can affect any organ system. Blood components originate within bone marrow; it therefore comes as no surprise that hematologic disorders frequently involve bone and associated tissues causing significant alterations in the bone marrow and may have relevant side effects on the skeleton. (Martinoli et al., 2011)

Magnetic resonance imaging (MRI) is the only imaging method that enables direct visualization of the bone marrow with high anatomical resolution and excellent soft tissue contrast. (Silva et al., 2013)

However, before discussing the MRI findings and technique for evaluating musculoskeletal involvement by hematological disease, it is helpful to first review the normal anatomic distribution, composition, maturation pattern and normal MRI appearance of bone marrow.

AIM OF THE STUDY:

To describe the musculoskeletal MRI findings in patients with hematological diseases.

BONE MARROW NORMAL ANATOMY

BONE MARROW NORMAL ANATOMY

The adult human skeleton has multiple functions; mainly as a structural support for the rest of the body by providing muscles attachments and provide the environment for hematopoiesis within the marrow spaces. It also has a role in protecting internal organs and maintaining a reservoir of growth factors and cytokines. (Taichman RS et al., 2005)

We can subdivide the adult human bony skeleton into two parts, the axial skeleton and the appendicular one. The axial skeleton consists of the skull, vertebrae and the ribs as well as the sternum, while the appendicular skeleton consists of the bones of the extremities. (Clark et al., 2008).

The bone marrow is found within the central cavities of axial and long bones. It consists of hematopoietic tissue islands and adipose cells surrounded by vascular sinuses interspersed within a meshwork of trabecular bone arranged in a particular manner (fig.1). (Travlos et al., 2006)

The main blood supply of healthy long bones was derived from the principal nutrient arteries (fig. 2), which penetrate the cortex (fig. 3) and perfuse the medullary sinusoids, then exit via multiple small veins. (Marenzana et al., 2013).