

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Natural Products' Combination on MicroRNAs Expression Level in Patients with Hepatocellular Carcinoma

Submitted By Hala Mohamed Mohamed El-Said

B.Sc. (1985) in Biochemistry Diploma of Analytical Biochemistry (2013) Faculty of Science, Ain Shams University

For the Fulfillment of Master Degree in Biochemistry

Under supervision

Prof. Dr. Fatma F. Abdel Hamid Prof. Dr. Motawa E. El-Houseini

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University Professor of Medical Biochemistry Cancer Biology Department National Cancer Institute Cairo University

Dr. Ahmed F. Soliman

Lecturer of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Biochemistry Department Faculty of Science Ain Shams University 2020

Ain Shams University Faculty of Science

Name : Hala Mohamed Hatab Scientific Degree : B.Sc. in Biochemistry

Department : Biochemistry

Faculty : Science University : Ain Shams

Graduation Year : 1985

I declare that this thesis has been composed by myself and the work herein has not been submitted for a degree at this or any other university.

Hala Mohamed Hatab

Acknowledgment

First of all, I offer thanks always to ALLAH, for his great care and guidance in every step of my life and for giving me the ability to complete this work and who made all things possible.

It was a great pleasure for me to express my deep gratitude and appreciation to **Prof. Dr. Fatma F. Abdel Hamid,** Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for her continuous guidance, advice and supervision and sacrificing a lot of her precious time to revise each and every step of this study. It is hard for me to find the appropriate words that would do her favors.

I would like to express my appreciation and gratefulness to **Prof. Dr. Motawa E. El-Houseini,** Professor of Medical Biochemistry, Cancer Biology Department, National Cancer Institute, Cairo University, for his supervision, his valuable advice in science discussion, generous supervision, vital encouragement, support and guidance in various ways from the early stage of research.

I would like to express my deep gratitude to **Dr. Ahmed F. Soliman,** Lecturer of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for his keen supervision and continuous assistance and constant support and encouragement are much appreciated. I am grateful in every possible way for his wise opinions and critical comments throughout the whole study and work.

I would like to express my thanks to **Dr. Tamer A. Al-Shafie** at Pharmacology and therapeutics Department,

Faculty of Pharmacy and Drug Manufacturing, Pharos

University in Alexandria for his help in designing this

study and for his support throughout this work.

I wish also to express my deep gratitude to **Dr. Yahia M. Ismail** at Medical Oncology Department,
National Cancer Institute, Cairo University for his help in
the collection of the study samples.

I wish also to express my thanks to all my family for their endless support and unyielding faith in me and for their tolerance of my absence, physically and emotionally stress many, many thanks. The completion of this thesis would have never been conceivable without their fervent motivation.

Hala M. Hatab

Abstract

Background: Investigating and evaluating possible alternative therapeutic strategies to control hepatocellular carcinoma (HCC) is a critical need because of its high prevalence and being one of the most lethal cancers. Curcumin and taurine showed potent anti-tumor activities in pre-clinical and clinical studies by targeting multiple pathways. Thus, this study was designed to assess the effect of a combined treatment consisted of curcumin, piperine, and taurine on circulating levels of interleukin-10 (IL-10), and microRNAs miR-141 and miR-21. **Methods:** Twenty eligible HCC patients administrated an oral dose of 4 g curcumin, 40 mg piperine, and 500 mg taurine.

Methods: Twenty eligible HCC patients administrated an oral dose of 4 g curcumin, 40 mg piperine, and 500 mg taurine daily for 3 successive treatment cycles, each was a 30-day. The level of IL-10 along with the expression levels of miR-141, and miR-21 were monitored in serum before starting the treatment and after each cycle. Patients were followed-up for a period of 24 months.

Results: The combined treatment was able to produce a significant decrease in the levels of serum IL-10, and miR-21 while it resulted in a non-significant up-regulation of serum miR-141 expression level. At the end of the follow-up period, the median overall survival (OS) rate was found to be 17.00 months with a worse OS in patients with high baseline levels of circulating IL-10 and miR-21 compared to those with low levels. In contrast, a low baseline level of circulating miR-141 was associated with poor prognosis.

Conclusion: The combined treatment may be able to increase the OS rate by altering the circulating level of IL-10 and miR-21.

Contents

~	Page
List of tables	
List of figures	
List of abbreviations	III
Introduction	
Aim of the work	X
I. Review of Literature	
1. Hepatocellular Carcinoma	
1.1. Etiology and risk factors	
➤ Hepatitis C virus	
Genetic instability in late liver diseases	
1.2. Surveillance	7
1.3. Diagnosis	
Diagnostic biomarkers	
I. Genome	9
II. Epigenome	
A. Histone modification	
B. DNA methylation	
C. Non-coding RNAs	
III. Transcriptome	
IV. Proteome	
A. Alfa-fetoprotein	
B. Alpha-L-fucosidase	
C. Des-gamma-carboxy prothrombin	
D. Dickkopf-1	
E. Osteopontin	18
F. Glypican-3	
G. Squamous cell carcinoma antigen	
V. Metabolome	20
➤ Imaging studies	20
1.4. Staging	
1.5. Clinical Management	
➤ Surgical procedure	22

➤ Thermal Ablation	22
Radiofrequency ablation	23
> Transarterial Therapies	23
Selective internal radiation therapy	23
> Systemic therapies	
2. Curcumin	
2.1. Medical importance	
➤ Anti-viral and anti-bacterial activities	
➤ Anti-inflammatory and anti-oxidant activities	28
> Anti-atherosclerosis and anti-hypertension activities	
➤ Anti-cancer activity	
2.2. Curcumin and piperine	30
3. Taurine	
3.1. Medical importance of taurine	32
4. MicroRNAs	34
4.1. Biogenesis and functions of miRNAs	34
4.2. Classification of miRNAs	
Oncogenic miRNAs	35
MiR-21	36
> Tumor suppressor miRNAs	36
MiR-141	
5. Cytokines	37
IL-10	38
II. Subjects and Methods	39
III. Results	
IV. Discussion	89
V. Summary	96
References	101
Arabic Summary	
Arabic Abstract	

List of Tables

Table No.	Subject	Page
1	Patients' baseline characteristics	74
2	The effect of different treatment cycles on serum levels of IL-10 and some biochemical parameters	77
3	Correlation analysis circulating miRNAs expression levels and IL-10 concentration with other parameters at baseline	81
4	Correlation analysis circulating miRNAs expression levels and IL-10 concentration with other parameters after the first cycle of treatment	81
5	Correlation analysis circulating miRNAs expression levels and IL-10 concentration with other parameters after two cycles of treatment	83
6	Univariate and multivariate Cox's regression analyses of overall survival	88

List of Figures

Fig. No	Title	Page
1	Diagnostic algorithm for a liver nodule in a patient with cirrhosis	8
2	Barcelona-Clinic Liver Cancer (BCLC) staging classification and treatment schedule	22
3	Chemical structure of curcumin; enol and keto forms	26
4	Biological importance of curcumin	27
5	Cellular and molecular mechanisms of curcumin in the prevention of oxidative associated disease	30
6	Taurine-mediated protection against pathology and disease	33
7	Biogenesis and functions of miRNA	35
8	Calibration curve for serum IL-10	49
9	Real-time polymerase chain reaction using SYBR Green I dye	59
10	Dissociation curve analysis of mature miR-21 PCR products showing single peaks from the specific amplification products	64
11	Relative expression level of (A) circulating miR-141 and (B) circulating miR-21 in sera of HCC patients	79
12	(A) Negative and significant correlation between miR-21 relative expression level and total bilirubin level, (B) Positive and significant correlation between miR-21 relative expression level and relative expression level of miR-141 after the first cycle of treatment.	82
13	(A) Negative and significant correlation between miR-141 relative expression level and IL-10 level, (B) Positive and significant correlation between miR-141 relative expression level and relative expression level of miR-21 after two cycles of treatment	84
14	Kaplan Meier plots of overall survival from the day of starting the treatment using the levels of (A) IL-10, (B) miR-141, and (C) miR-21.	86

List of Abbreviations

AFP: Alfa fetoprotiens AFU: Alfa-L-fucosidase

AGO2: Argonaute family protein 2

ALP: Alkaline phosphatase
ALT: Alanine aminotransferase
AST: Aspartate aminotransferase
ATF6: Activating transcription factor6.

Bax: Bcl2-associated X protein

BCG: Bromocresol green

BCLC: Barcelona Clinic Liver Cancer b-FGF Basic fibroblast growth factor

CAT: Catalase

CD-44: Cluster of differentiation-44

CDKN2A: Cyclin-dependent kinase inhibitor 2A

CEUS Contrast-enhanced ultrasound

Chol: Cholesterol

CNS: Central nervous system CT: Computed tomography

CTNNBI: β-Catenin

DCP: Des-gamma-carboxy prothromin

DGCR8: DiGeorge syndrome chromosomal (or critical) region 8

DKK1: Dickkopf WNT signaling pathway inhibitor 1

ECM: Extracellular matrix

ECOG: Eastern Cooperative Oncology Group EMT: Epithelial-mesenchymal transition ERK: Extracellular signal-regulated kinases

FDA: Food and drug administration

FWA: Federalwide Assurance FXS: Fragile X syndrome

GABA: gamma-Aminobutyric acid

GPC-3: Glypican-3

GPx Glutathione peroxidase GR: Glutathione reductase

Ш