

ENERGY AND AVAILABILITY ANALYSIS OF THE STEAM POWER PLANTS CASE STUDY: ABU QIR POWER PLANT UNIT 5

By

Mohamed Sherif Ahmed Ahmed Rabie

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

ENERGY AND AVAILABILITY ANALYSIS OF THE STEAM POWER PLANTS CASE STUDY: ABU QIR POWER PLANT UNIT 5

By

Mohamed Sherif Ahmed Ahmed Rabie

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Sayed Ahmed Kaseb Dr. Gamal Abd El Moniem El Hariry

Professor, Mechanical Power Engineering
Department
Faculty of Engineering, Cairo University

Associate Professor Mechanical Power Engineering Department Faculty of Engineering, Cairo University

ENERGY AND AVAILABILITY ANALYSIS OF THE STEAM POWER PLANTS CASE STUDY: ABU QIR POWER PLANT UNIT 5

By Mohamed Sherif Ahmed Ahmed Rabie

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

Approved by the Examining Committee,

Prof. Dr. Sayed Ahmed Kaseb, Thesis Main Advisor

Assoc. Prof. Dr. Gamal Abd El Moniem El Hariry, Member

Prof. Dr. Mahmoud Abdel Wahab Kassem, Internal Examiner

Prof. Dr. Nabil Ahmed Shawky Elminshawy, External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Mohamed Sherif Ahmed Ahmed Rabie

Date of Birth: 15/09/1987 **Nationality:** Egyptian

E-mail: msaa.rabie@gmail.com

Phone: +201007393277

Address: 36 Ibrahim El Attar, Zizinia, Alexandria

Registration Date: 01/03/2016 **Awarding Date:**/2020 **Degree:** Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Sayed Ahmed Kaseb

Assoc. Prof. Dr. Gamal Abd El Moniem El Hariry

Examiners: Prof. Dr. Sayed Ahmed Kaseb (Thesis main advisor)

Assoc. Prof. Dr. Gamal Abd El Moniem El Hariry

(Member)

Prof. Dr. Mahmoud A. Kassem (Internal examiner) Prof. Dr. Nabil A. S. Elminshawy (External examiner)

Title of Thesis: Energy and Availability Analysis Of The Steam Power

Plants, Case Study: Abu Qir Power Plant Unit 5

Key Words: Energy; Exergy; Exergy Destruction; Irreversibility;

Thermodynamic Analysis; Efficiency; Availability.

Summary:

In this study, An energy and exergy analysis were made on the Abu Qir power plant unit 5 in Alexandria, Egypt to measure the performance of the unit and to identify the plant components that have the largest amounts of losses.

The analysis was made on the loads 277 MW, 260 MW, 233 MW and it is compared with the design load. The largest amount of exergy destruction was found at the load of 277 MW where the highest exergy destruction was found in the boiler which destroyed 405.6 MW. It is followed by the turbine where 66.3 MW was lost to the environment. The condenser was the third highest source of irreversibility with a value of 13 MW. The 1st and 2nd law net efficiencies in this case were 37.54% & and 35.41% respectively.

In addition, The exergy efficiency of the turbine and boiler decreased when the environment temperature raised (as in the summer) while the condenser efficiency increased. Each decrease in the intermediate turbine steam inlet temperature by 10 degrees will cause the unit load to decrease by 5 MW and the thermal efficiency by 0.73%. Also, each raise in the condenser pressure by 0.01 bar, the unit load decrease by 0.7 MW and the thermal efficiency drop by 0.8%.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Dedication

I dedicate this thesis to the soul of my beloved mother (may god bless her) who was the source of my persistence.

Acknowledgments

In the beginning, I am grateful to God for the good health and well-being that are necessary to complete this thesis. I am also using this opportunity to express my gratitude to everyone who supported me throughout the study. I am thankful for their aspiring guidance, invaluably constructive criticism and friendly advice during the work. I am sincerely grateful to them for sharing their truthful and illuminating views on a number of issues related to this thesis.

I express my special thanks to Prof. Dr. Sayed Ahmed Kaseb and Dr. Gamal Abd El Moniem El Hariry for their support, guidance and encouragement.

From the Egyptian electricity holding company, I would like to thank the chairman of the board of directors Eng. Mohamed EL Abd, the manager of Abu Qir production sector Eng. Mohamed El Touny, the operation manager Eng. Zakaria Soffar, the operation director Eng. Mohamed khamis, my friend and colleague Eng. Ahmed Abd El Aziz, for their support and help in the extraction of the readings of unit 5.

I would also like to thank all my professors for their help throughout the years of my academic studies. I extend my gratitude to my dear colleagues and friends Tarek Said and Emad Abdel Samad for their valuable suggestions and noteworthy discussions.

Finally, special thanks to my family, my wife and my son for their patience, care and support to be able to continue this research to the end.

Table of Contents

ACKNOWLEDGMENTS	i
TABLE OF CONTENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	v
NOMENCLATURE	vii
ABSTRACTv	iii
CHAPTER 1: INTRODUCTION	1
1.1 Egypt energy crisis 1.2 Electricity projects and plans 1.2.1 Power plants projects 1.2.2 Pump & storage power projects 1.3 Egypt resources 1.4 Egyptian electricity holding company (EEHC) 1.5 Importance of efficiency studies	. 1 . 1 . 3 . 4 4
CHAPTER 2: LITERRATURE REVIEW	7
2.1 Introduction2.2 Detailed literature review2.3 Research scope	7 . 9
CHAPTER 3: THERMODYNAMIC ANALYSIS OF THE CYCLE	10
3.1 Ideal rankine cycle	11
CHAPTER 4: ABU QIR POWER PLANT DESCRIPTION	14
4.2 Abu Qir power plant 4.3 Unit 5 description 4.3.1 Boiler section 4.3.2 Turbine section	14 17 18 18 19
4.3.4 Condenser section 4.3.5 Condensate pumps 4.3.6 Feedwater pump turbine 4.4 Plant overview.	19 20 20 20 20 22

CHAPTER 5: THERMODYNAMIC SIMULATION OF ABU QIR PLANT	
COMPONENTS	27
5.1 Boiler calculations	27
5.2 Turbine calculations.	28
5.3 Pumps calculations	28
5.4 Condenser calculations.	29
5.5 Feedwater heaters calculations.	29
5.6 Cycle exergy destruction calculations.	30
5.7 Cycle overall performance calculations	30
CHAPTER 6: RESULTS AND DISSCUSSIONS	31
6.1 The design load 303 MW	31
6.1.1 The energy analysis of the cycle gave the following results	34
6.1.2 The exergy analysis of the cycle gave the following results	36
6.2 For the load of 277 MW	42
6.2.1 The energy analysis of the cycle gave the following results	45
6.2.2 The exergy analysis of the cycle gave the following results	47
6.3 For the load of 260 MW	53
6.3.1 The energy analysis of the cycle gave the following results	56
6.3.2 The exergy analysis of the cycle gave the following results	58
6.4 For a load of 233 MW	64
6.4.1 The energy analysis of the cycle gave the following results	67
6.4.2 The exergy analysis of the cycle gave the following results	69
6.5 Comparison stats between the three loads	75
6.6 Comparison with previous work.	80
6.7 Data Analysis	81
CHAPTER 7: CONCLUSIONS	85
7.1 Summary	85
7.2 Conclusions.	87
7.2.1 At the design load of 303 MW.	87
7.2.2 At unit load of 277 MW	87
7.2.3 At unit load of 260 MW	88
7.2.4 At unit load of 233 MW.	89
7.2.5 Comparisons Conclusions.	90
7.3 Recommendations for future work	91
REFERENCES	92
APPENDIX A	94
A.1 Introduction	94
A.2 ESS codes	94
APPENDIX B	106

List of Tables

Table 4.1: Working values of the unit at the maximum load	. 18
Table 4.2: Observations at 303 MW	
Table 4.3: Observations at 277 MW	. 23
Table 4.4: Observations at 260 MW	. 24
Table 4.5: Observations at 233 MW	. 25
Table 4.6: Steam flow and Natural gas consumption	26
Table 4.7: Natural gas heating values	26
Table 6.1: Properties at 303 MW	. 31
Table 6.2 : Plant component energy analysis result at 303 MW	34
Table 6.3: Plant component exergy analysis result at 303 MW	36
Table 6.4: Properties at 277 MW	42
Table 6.5: Plant component energy analysis result at 277 MW	45
Table 6.6: Plant component exergy analysis result at 277 MW	47
Table 6.7: Properties at 260 MW	
Table 6.8: Plant component energy analysis result at 260 MW	56
Table 6.9: Plant component exergy analysis result at 260 MW	
Table 6.10 : Properties at 233 MW	
Table 6.11 : Plant component energy analysis result at 233 MW	
Table 6.12 : Plant component exergy analysis result at 233 MW	
Table 6.13 : Previous work comparison	
Table 6.14: The effect of changes in environment temperature	81
Table 6.15 : Effect of R/H temperature change on turbine work and plant thermal	
efficiency	
Table 6.16: Effect of condenser pressure change on turbine work and plant therma	
efficiency	
Table 7.1 : 2^{nd} law efficiency of the plant components in the different loads	
Table 7.2 : Exergy destruction quantities of the plant components in the different	
loads	87

List of Figures

Figure 1.1: Hamrawein power plant 3D plan	3
Figure 1.2 : Ataqa hydro power station 3D plan	
Figure 1.3: Egyptian unified grid in 2005	
Figure 3.1 : Rankine cycle processes.	
Figure 3.2: The difference between the ideal and the actual rankine cycle	
Figure 4.1: Temperature at Abu Qir in 2019	
Figure 4.2: Wind Speed at Abu Qir in 2019	
Figure 4.3 : Atmospheric pressure at Abu Qir in 2019	
Figure 4.4: Satellite image of the Abu Qir power station	
Figure 4.5: The Unit 5 overview	
Figure 6.1: Mass flow rate balance through the different points at 303 MW	
Figure 6.2 : Plant energy efficiency Shares at 303 MW	
Figure 6.3: Exergy flow diagram of the plant at 303 MW with the percent of	
exergy destruction share of each component	
Figure 6.4: Exergy destruction through the 3 different turbines at 303 MW	
Figure 6.5: Turbine 2 nd law efficiency at 303 MW	
Figure 6.6: Exergy destruction through the different plant pumps at 303 MW	
Figure 6.7: Plant pumps 2 nd law efficiency at 303 MW	
Figure 6.8: Exergy destruction through feedwater heaters at 303 MW	
Figure 6.9: Feedwater heaters 2 nd law efficiency at 303 MW	
Figure 6.10: Mass flow rate balance through the different points at 277 MW	
Figure 6.11 : Plant energy efficiency Shares at 277 MW	
Figure 6.12: Exergy flow diagram of the plant at 277 MW with the percent of	
exergy destruction share of each component	
Figure 6.13: Exergy destruction through the 3 different turbines at 277 MW	49
Figure 6.14: Turbine 2 nd law efficiency at 277 MW	50
Figure 6.15: Exergy destruction through the different plant pumps at 277 MW	50
Figure 6.16: Plant pumps 2 nd law efficiency at 277 MW	51
Figure 6.17: Exergy destruction through feedwater heaters at 277 MW	52
Figure 6.18: Feedwater heaters 2 nd law efficiency at 277 MW	
Figure 6.19: Mass flow rate balance through the different points at 260 MW	55
Figure 6.20 : Plant energy efficiency distribution at 260 MW	57
Figure 6.21: Exergy flow diagram of the plant at 260 MW with the percent of	
exergy destruction share of each component	
Figure 6.22: Exergy destruction through the 3 different turbines at 260 MW	. 60
Figure 6.23: Turbine 2 nd law efficiency at 260 MW	61
Figure 6.24: Exergy destruction through the different plant pumps at 260 MW	
Figure 6.25 : Plant pumps 2 nd law efficiency at 260 MW	62
Figure 6.26: Exergy destruction through feedwater heaters at 260 MW	
Figure 6.27: Feedwater heaters 2 nd law efficiency at 260 MW	63
Figure 6.28: Mass flow rate balance through the different points at 233 MW	
Figure 6.29 : Plant energy efficiency distribution at 233 MW	68
Figure 6.30: Exergy flow diagram of the plant at 233 MW with the percent of	
exergy destruction share of each component.	
Figure 6.31: Exergy destruction through the 3 different turbines at 233 MW	71

Figure 6.32: Turbine 2 nd law efficiency at 233 MW	72
Figure 6.33: Exergy destruction through the different plant pumps at 233 MW.	72
Figure 6.34 : Plant pumps 2 nd law efficiency at 233 MW	73
Figure 6.35: Exergy destruction through feedwater heaters at 233 MW	74
Figure 6.36: Feedwater heaters 2 nd law efficiency at 233 MW	74
Figure 6.37 : Plant 1 st & 2 nd law efficiency	76
Figure 6.38 : Main plant components η II	76
Figure 6.39 : The 3 main turbines η II	77
Figure 6.40 : Feedwater heaters η II	77
Figure 6.41 : Plant pumps η II	78
Figure 6.42 : Other small destruction sources	78
Figure 6.43 : Plant amounts of exergy destruction.	79
Figure 6.44 : Comparison with similar work	80
Figure 6.45: The effect of changes in environment temperature	81
Figure 6.46 : Effect of R/H temperature change on turbine work	82
Figure 6.47: Effect of R/H temperature change on Plant thermal efficiency	83
Figure 6.48 : Effect of condenser pressure change on turbine work	84
Figure 6.49: Effect of condenser pressure change on plant thermal efficiency	84

Nomenclatures

C_p Cooling water specific heat (kJ/kg.⁰C)

h Specific enthalpy (kJ/kg)
I Destructed exergy (MW)
m Mass flow rate (kg/s)

P Pressure (bar) Q Heat (MW)

s Specific entropy (kJ/kg.K)

T Temperature (⁰C) W Work (MW)

X Total exergy (MW)

GREEK SYMBOLS

Ψ Specific exergy (kJ/kg)

 ξ Ratio of chemical exergy to the LHV

 η_I Energy efficiency (%) η_{II} Exergy Efficiency (%)

SUBSCRIPTS

b boiler

c condenser

e exit f fuel h heater i inlet

j pre-specified point

o dead state p pump t turbine

ABBREVIATIONS

DRT Drain Recovery Tank

FLT First law of thermodynamics

FWT Feedwater Tank

HPT High Pressure turbine
IPT High Pressure turbine
LHV Lower Heating Value
LPT High Pressure turbine

SLT Second law of thermodynamics

Abstract

In this study, An energy and exergy analysis were made on the Abu-Qir power plant unit 5 in Alexandria, Egypt to measure the performance of the unit and to identify the plant components that have the largest amounts of losses.

The analysis was made on the loads 277 MW, 260 MW, 233 MW and it is compared with the design load. The largest amount of exergy destruction was found at the load of 277 MW where the highest exergy destruction was found in the boiler which destroyed 405.6 MW. It is followed by the turbine where 66.3 MW was lost to the environment. The condenser was the third highest source of irreversibility with a value of 13 MW. The 1st and 2nd law net efficiencies in this case were 37.54% & and 35.41% respectively.

In addition, The exergy efficiency of the turbine and boiler decreased when the environment temperature raised (as in the summer) while the condenser efficiency increased. As recommendations, each decrease in the intermediate turbine steam inlet temperature by 10 degrees will cause the unit load to decrease by 5 MW and the thermal efficiency by 0.73%. Also, each raise in the condenser pressure by 0.01 bar, the unit load decrease by 0.7 MW and the thermal efficiency drop by 0.8%.

Chapter 1: Introduction

1.1 Egypt energy crisis

Egypt energy production sector is confronting in the present a lot of conflicting and hard challenges. This is seen in Egypt's huge efforts to make a balance between production, domestic consumption, and export revenue, while seeking to maintain internal political stability.

Despite that Egypt is the largest non-OPEC oil producer in Africa, the second largest gas producer in the continent and while the country is doing an essential role in regional and global energy markets, the country's energy production status through the last years reflects the opposite on all levels.[1]

This problem is a the result of historical 'mal-planning' as it is the consequence of the country's past years of political disturbance after the 2011 revolution. However, starting from late 2014 investment and economic growth began picking up on the back of political stability. Fixed investment was set to be the primary driver of growth as a result of greater clarity and transparency in Egypt's economic policy. Furthermore, the current government firmly displayed some extreme measures to quickly fix the energy producing sector. This is most likely disclosed under the pillars of the new energy strategy, including:

- 1. Security, by boosting, diversifying and improving energy efficiency.
- 2. Sustainability, by addressing debt build-up and phasing out of subsidies in a socially responsible manner.
- 3. Governance, by improving and modernizing the oil and gas sector's governance and encouraging private sector investment.

1.2 Electricity projects and plans

1.2.1 Power plants projects [3]

1. Five year plan (2012 - 2017)

- The amended seventh five-year plan (2012 -2017) included the addition of 27400 MW from thermal power plants to the unified grid, including the fast-track plan & Siemens projects at an estimated investment cost of USD 17 billion.
- These projects are implemented by the Electricity Sector and funded with soft loans from Arab and international financing institutions.
- Part of the Plan projects with a total capacity of 23311 MW were put to operation by the end of financial year of 2017/2018.
- It is scheduled to put in operation another 2790 MW during financial year 2018/2019.
- Another 1300 MW is targeted to be in operation and the whole plan projects to be completed in 2019/2020.