

Comparative Pharmacodynamic/Pharmacokinetic Studies on Tetracycline Hydrochloride and Its Loaded Nano-emulsion Formula

Thesis submitted by

Mohamed Said Mohamed Saber

B. Sc. Of Veterinary Medicine/ Assuit University (2005) MVSc. of Veterinary Medical Science (Pharmacology)/ Cairo University (2016.)

For the Degree of the (Ph.D.) in

Veterinary Medical Science (Pharmacology)

Under supervision of:

Prof. Dr.: Aziza Mahrous Mohamed Amer

Professor of Pharmacology
Department of Pharmacology
Faculty of Veterinary Medicine
Cairo University.

Dr.: Shymaa Ahmed El Badawy El Sherbiny

Lecture of Pharmacology
Department of Pharmacology
Faculty of Veterinary Medicine
Cairo University.

(2020)

Cairo University Faculty of Veterinary Medicine

Supervision sheet

Prof. Dr.: Aziza Mahrous Mohamed Amer

Professor of Pharmacology
Department of Pharmacology
Faculty of Veterinary Medicine
Cairo University.

Dr. : Shymaa Ahmed El Badawy El Sherbiny

Lecture of Pharmacology

Department of Pharmacology

Faculty of Veterinary Medicine

Cairo University.

Cairo University Faculty of Veterinary Medicine

Name: Mohamed Said Mohamed Saber

Date of birth: 6-10-1983 Place of birth: Elmonofia Nationality: Egyptian

Degree: Philosophy of Doctor in Veterinary Science- Pharmacology.

Specification: Pharmacology

Title Comparative Pharmacodynamic/Pharmacokinetic Studies on Tetracycline

Hydrochloride and Its Loaded Nano-emulsion Formula

Supervision:

Prof. Dr.: Aziza Mahrous Mohamed Amer

Professor of Pharmacology, Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University.

Dr. : Shymaa Ahmed El Badawy El Sherbiny.

Lecture of Pharmacology, Department of Pharmacology, Faculty of

Veterinary Medicine, Cairo University.

Abstract

Tetracycline Hcl loaded nanoemulsion (TC-NE) was prepared, characterized and stability was assessed. MDS from 32.33±3.81 to 101.5±9.86 nm.; size has 3 S/CoS ratios were 1:1, 1:2 and 2:1. PDI value (0.11± 0.01: 0.41± 0.07). ZP values (-25.45±3.43 to -33.47±2.11 mV.) TEM showed spherical globules with uniform droplet size.

Pharmacokinetics and pharmacodynamics of TC-Hcl powder and TC-NE were studied in rabbits following a single iv and oral dose (50 mg/kg b.wt). TC-NE had higher distribution volume V2 and slowly cleared Cl2 than TC- Hcl. Significant longer half-life for TC-NE than for TC-Hcl powder with calculated C_{max} , achieved at prolonged calculated tmax in TC-NE than in TC-Hcl oral treated rabbits, respectively. A Significant higher AUC0-inf. (20.377 \pm 1.4841 µg/ml.h and 11.056 \pm 0.5835 µg/ml.h) at prolonged MRT (3.926 \pm 0.4712 h. and 2.771 \pm 0.2932 h.) and higher bioavailability in TC-NE than TC-Hcl, respectively. Some changes in histopathology, liver and kidneys function were observed with the two formulas. No difference in antibacterial and MIC between TC-NE than TC-Hcl.

Conclusion: The nanoemulsion formulation improves both pharmacokinetis and pharmacodynamics and not affect the antibacterial efficacy as compared with TC-Hcl formula. This formulation can be useful for reduce the used dose to obtain the same serum concentration, reduce tissue effect and save cost of medication. Further studies are needed for clinical evaluation of the TC-Hcl formula.

Dedication

I wish to introduce my deep gratitude and utmost thanks to:

My parents

and

Special thanks to

my wife

for her continuous encouragement to

complete this work.

Acknowledgment

First and foremost, I greatly indebted in all my work and success to our gracious Allah.

I owe a great debt of gratitude and very special thanks to **Prof.Dr. Aziza Mahrous Mohamed Amer**, Professor of Pharmacology and Ex-dean of Faculty of Veterinary Medicine- Cairo University, for her supervision, positive criticism, understanding, endless tolerance, sincere guidance and continous encouragement that helped me to produce this work.

Sincere thanks are extended to **Dr. Shymaa Ahmed El badawy El Sherbiny**, lecturer of of Pharmacology and Ex-dean of Faculty of Veterinary Medicine-Cairo University for her supervision, and advice throughout the experimental work

Grateful thanks are to **Dr. Wessam H. Abd-Elsalam**, lecturer of Pharmaceutical, faculty of Pharmacy, Cairo University, for her great help and preparation and identification of tetracycline hcl loaded nanoemulsion formula.

Grateful thanks are to **Omar A. Ahmed-Farid,** researcher at Dept. of Physiology NODCAR, Giza, Egypt for his help and work in measuring drug concentration using HPLC.

Sincere thanks to Prof. **Dr. Ahmed M Othman, professor** of Pathology, Faculty of Veterinary Medicine, Cairo University for his help and carrying on the histopathology work.

Special and great thanks for **Prof.Dr. Mohamed M.M. Amer** Prof of Poultry Disease, Faculty of Veterinary Medicine, Cairo University for his great help and devoting his time in supplying us with required animals and materials and his continuous help in planning, scientific follow up, publication and finishing of this work.

Contents

Dedication	I
Acknowledgment	II
Contents	III
List of tables	V
List of figures	VI
List of Abbreviations	VIII
Chapter (1) Introduction	1
Chapter (2) Review: Literature	7
Summary	7
Introduction	8
1. Tetracyclines	11
2- Physicochemical characters of tetracycline	12
3- Tetracycline in Veterinary medicine	13
4- Contraindication of tetracyclines	13
5- Mode of Tetracycline action	14
6. Tetracycline-resistant	14
7- Nanoemulsions formulation and improvement of drug	16
delivery system.	
8- Tetracycline hydrochloride–loaded particles	21
9- Tetracycline loaded nanoemulsion formulation	23
10 - Pharmacokinetic of tetracycline	25
11- Pharmacokinetic parameters of TC nanoparticles	30
12- Effect of antibiotics nanoformulation on antimicrobial	33
activities:	
13- Effect of Tetracycline on liver and kidney	36
14- Minimum inhibitory concentrations	44
15- HPLC method for tetracycline	46

16- Tissue distribution of tetracycline	48
Chapter (3) Published Papers	52
3.1. Pharmacokinetics of tetracycline and tetracycline nano-	53
emulsion formula in rabbits	33
3. 2. Pharmacological studies on tetracycline and tetracycline	55
nano-emulsion formulas.	33
3. 3. Comparative Pharmacodynamic And Histopathological	
Studies On Tetracycline Loaded Nano-emulsion And	57
Tetracycline In Rabbits.	
Chapter (4) Discussion	59
Chapter (5) Conclusions and Recommendations	69
Chapter (6) Summary	71
Chapter (7) References	75
الملخص العربي	97
المستخلص العرب	101

List of Tables

Tables of Chapter (3) published papers

Paper 3. 1: Pharmacokinetics of tetracycline and tetracycline nano=emulsion formula in rabbits.

Table No.	Title	Page
1	Mean droplet size (MDS), zeta potential (ZP) measurements and polydispersity index (PDI of selected formulae.	135
2	Tetracycline pharmacokinetic parameters in plasma after oral and I.V administration of TC-hcl and TC-nm (50 mg/kg b.wt) in male white new zealand rabbits	135

Paper 3. 2: Pharmacological studies on tetracycline and tetracycline nano-emulsion formulas.

Table No.	Title	Page
1	Plasma concentration of TC- hcl and TC-nm after oral or i.v administration (50 mg/kg b.wt) in rabbits	4
2	Pharmacokinetic parameters of TC-hcl and TC-nm after oral or i.v administration (50 mg/kg b.wt) in rabbits	5
3	MIC values of tested Gram –ve and Gram +ve bacterial strains to both TC-hcl and tc-nm formula	6

Paper 3. 3: Comparative Pharmacodynamic And Histopathological Studies On Tetracycline Loaded Nano-emulsion And Tetracycline In Rabbits.

Table No.	Title	Page
1	Liver and Kidney function test in treated rabbits with nano-emulsions tetracycline (TC-nm), tetracycline (TC-HCl) and adjuvant control groups at 7th day of treatment	859
2	Microbiologically (MC) and HPLC results of tetracycline (TC-HCl) and nano-emulsions tetracycline (TC-nm) tissue concentration (μg/g) in treated groups at 1-4 days after stop administration	860

List of Figures

Figures of Chapter (3): Published papers.

Paper 3. 1: Pharmacokinetics of tetracycline and tetracycline nanoemulsion formula in rabbits.

Figure No.	Title	Page
1	Pseudoternary phase diagrams of (a) IPM and (b) Mig based systems showing clear zones using Cremophor RH40/PEG 400 at indicated mass ratios	133
2	Transmission electron micrographs of (a) F1 and (b) F2.	134
3	Semilogarethmic graph depicting the time concentration relationship of TC-hcl or TC-nm after i.v administration (50 mg/kg b.wt) in rabbits.	134
4	Semilogarethmic graph depicting the time concentration relationship of TC-hcl or TC-nm after after oral administration (50 mg/kg b.wt) in rabbits.	134

Paper 3. 2: Pharmacological studies on tetracycline and tetracycline nano-emulsion formula.

Figure No.	Title	Page
1	Semilogarethmic graph depicting the time concentration relationship of TC-Hcl or TC-NE after oral administration (50 mg/kg b.wt) in rabbits.	4
2	Semilogarethmic graph depicting the time concentration relationship of TC-Hcl or TC-NE after i.v administration (50 mg/kg b.wt) in rabbits.	4

Paper 3. 3: Comparative Pharmacodynamic And Histopathological Studies On Tetracycline Loaded Nanoemulsion And Tetracycline In Rabbits

Figure No.	Title	Page
1	Microbiologically (MC) and HPLC of tetracycline (TC-Hcl) and nano-emulsions tetracycline (TC-NE) tissue concentration ($\mu g/g$) in treated groups at 1-4 days post stop treatment	861
2	Liver: ballooning degeneration of hepatic cells and leukocytic infiltration of portal area arrow (X100).	
3	Liver: intracellular lipid droplets arrow (X200).	
4	Kidney: normal histological structure of tubular epithelial lining arrow (X100).	0.62
5	Kidney: normal histological structure of glomeruli arrow (X200).	862
6	Lung: hyperplastic changes of bronchial epithelial lining with sloughing of some epithelial cells in its lumen arrow (X200).	
7	Cardiac muscle: tissue section showing mild intermuscular edema arrow (X200).	
8	Liver: ballooning and granularity of hepatic cells arrow (X100).	
9	Liver: narrowing of hepatic sinusoids and hyperplasia of Kupffer cells arrow (X200).	
10 11	Kidney: hyperceliularity of glomerular tufts arrow (X100). Kidney: degeneration of tubular epithelial lining arrow (X200).	0.62
12	Lung: congestion of perialveolar and peri-bronchial blood capillaries arrow (X100).	863
13 14	Lung: multiple emphysematous areas arrow (X200). Cardiac muscle: intermuscular oedema arrow (H&Ex100).	
15	Cardiac muscule: necrosis of muscle bundles arrow (X200).	
16	Liver: swelling of hepatocytes and narrowing of sinusoids arrow (X 100).	
17	Liver: centrolobular apoptotic bodies arrow (X200).	
18	Kidney: hypercellularity of glomerular tufts arrow (X100). Kidney: degeneration of tubular epithelial lining arrow (X 200).	
19 20	Lung: congestion of perialveolar capillaries arrow (X100).	864
21	Lung: focal emphysematous area arrow (X200).	
22	Cardic muscle: intermuscular oedema arrow (X100).	
23	Cardic muscle: weding spaces in between muscle bundles arrow (X200).	

List of Abbreviations

TC-Hcl Tetracycline hydrochloride powder

TC-NE Tetracycline hydrochloride loaded nanemulsion.

MIC Minimal inhibitory concentration.

 $\mathbf{t.0.5_{ka}}$ Absorption half-life time.

t.0.5 $_{B}$ Elimination half-life time.

Cl₂ Clearance rate from the peripheral compartment.

C_{max} Maximum blood concentration in blood after oral

administration.

 T_{max} Time at which maximum blood concentration in

blood after oral administration is reached.

AUC_{0-inf} Area under time concentration curve from zero time

to infinity.

MRT Time of drug persistence in the body.

F Bioavailability.

 \mathbf{C}^{0} Plasma concentration at zero time of administration.

 \mathbf{K}_{10} Distribution constant in the central compartment.

 \mathbf{K}_{12} Distribution constant from the central compartment

to peripheral compartment.

 \mathbf{K}_{21} Distribution constant from the peripheral

compartment to central compartment.

 V_{dss} Volume of distribution at steady state.

PK Pharmacokinetics

PD Pharmacodynamics

HPLC High performance liquid chromatography

TC Tetracycline

TCs Tetracyclines

S/CoS Surfactant/Cosurfuctant

MC Microbiological assay

Chapter (1)

Introduction