

The ameliorating effect of melatonin hormone on the reproductive disorders and organ damage induced by hyperthyroidism in male rats

Thesis presented by

Hager Magdy Ramadan

(B.V.Sc., Cairo University, 2016)
For the degree of M.V.Sc.
(Physiology)

Under the supervision of

Dr. Hodallah Hatem Ahmed

Professor of physiology Faculty of Veterinary Medicine Cairo University

Dr. Nadia Ahmed Taha

Professor of physiology Faculty of Veterinary Medicine Cairo University

Cairo University Faculty of Veterinary Medicine Department of Veterinary Physiology

Supervision sheet

This thesis is under the supervision of

Dr. Hodallah Hatem Ahmed

Professor of physiology
Faculty of Veterinary Medicine
Cairo University.

Dr. Nadia Ahmed Taha

Professor of physiology
Faculty of Veterinary Medicine
Cairo University.

Cairo University.
Faculty of Veterinary Medicine.
Department of Physiology.

The name: Hager Magdy Ramadan

Nationality: Egyptian
Date of birth: 28/9/1993
Place of birth: Cairo
Specialization: Physiology.

Title of thesis: The ameliorating effect of melatonin hormone on the

reproductive disorders and organ damage induced by hyperthyroidism in

male rats

Supervisors:

Dr. Hodallah H. Ahmed

Prof. of Physiology-Faculty of Veterinary Medicine-Cairo University

Dr. Nadia A. Taha

Prof. of Physiology-Faculty of Veterinary Medicine-Cairo University

Abstract

The present study was carried out to investigate the effects of melatonin on the reproductive disorder and organ damage induced by hyperthyroidism. A total 75 male rats were divided into five groups 15 rats each: control group (distilled water containing 4M ammonium hydroxide in methanol and 1% absolute ethanol), L-thyroxine group (0.2 mg/kg), L-thyroxine plus melatonin (1, 5 and 10 mg/kg), L-thyroxine and melatonin were injected intraperitoneally daily for 21 days. Fasting blood samples were collected from each rat early in the morning at the 11th day and at the end of the experiment, serum was separated, fasting blood glucose level was measured immediately after serum collection and the serum stored either at -20 °C to be used for determination of liver function tests (AST, ALT and ALP), kidney function tests (creatinine level and urea concentration), lipogram (total cholesterol, triglycerides, HDL and LDL) and hormones (T4, T3, TSH, FSH, LH and testosterone) or at -80 °C for determination of total antioxidants capacity. Five rats were scarified from each group on the 11th day and at the end of the experiment and the following organs were collected to be used as follow liver, kidney and heart were used for estimation of oxidant and antioxidant parameters (MDA, SOD and GSH) while liver and kidney were used for determination of DNA damage and thyroid gland, Liver, kidney, heart and testis were used for histopathological examination at the end of experiment. The results revealed that hyperthyroidism increased the levels of glucose, urea, liver enzymes activities, T3, T4, testosterone, percentage of DNA fragmentation and MDA concentration with histopathological alteration. At the same time hyperthyroidism decreased the performance trait, creatinine, lipogram, TSH, LH, FSH, total antioxidants capacity, SOD and GSH activity. Melatonin hormone could counteract the harmful effects of hyperthyroidism on the aforementioned parameters but couldn't ameliorate the reproductive disorders.

Key Words: Melatonin- L-thyroxine- harmful effect- Ameliorating effect- Male rats.

Acknowledgement

First and foremost, I would like to thank **ALLAH** to whom every success should be attributed, and then there are a number of people I must thank, without whom, the completion of this work would have been impossible.

Firstly I wish to express my deepest thanks and gratitude to **Dr.Hodallah Hatem Ahmed,** professor of Physiology, Faculty of Veterinary Medicine, Cairo University, for her scientific supervision for this thesis, kind encouragement, valuable guidance and continuous interest which played an important role in the completion of this work.

Deep gratitude to **Dr. Nadia Ahmed Taha**, professor of Physiology, Faculty of Veterinary Medicine, Cairo University, for her support, valuable supervision and encouragement.

My sincere thanks to **Dr. Sahar Ahmed AbdelRahman** professor of Pathology, Faculty of Veterinary Medicine, Cairo University for her technical support, sincere cooperation and continuous help.

I am very grateful to all of **staff members** in the Department of Physiology, Faculty of Veterinary Medicine, Cairo University, for their encouragement.

Dedication

To my family and husband to say thanks seems so small but, thanks for everything... their support, encouragement and helping me.

LIST OF CONTENTS

ITEMS	Page NO.
Chapter (1): INTRODUCTION	1
Chapter (2): REVIEW OF LITERATURE	5
2.1. Hyperthyroidism	8
2.2. Melatonin	18
Chapter (3): PUBLISHED PAPERS	
3.1. Melatonin improves blood biochemical parameters and DNA integrity in the liver and kidney of hyperthyroid male rats.	37
3.2. Melatonin enhances antioxidant defenses but could not ameliorate the reproductive disorders in induced hyperthyroidism model in male rats	63
3.3. Effect of L-thyroxine either alone or in combination with melatonin on male rats. A study on performance trait and some biochemical parameters	115
Chapter (4): DISCUSSION	146
Chapter (5): CONCLUSION AND RECOMMENDATIONS	166
Chapter (6): SUMMARY	168
Chapter (7): REFERENCES	175
ARARIC SUMMARY	1

LIST OF TABLES

Table No.	Table title	Page No.
110.	Tables of paper 1	110.
1	Effect of L-thyroxine either alone or in combination with melatonin on liver function tests in the serum of male rats.	60
2	Effect of L-thyroxine either alone or in combination with melatonin on kidney function tests in the serum of male rats.	61
3	Effect of L-thyroxine alone and in combination with melatonin on level of DNA damage (%) in the kidney and liver tissue of male rats at the 22 nd day.	62
	Tables of paper 2	
1	Effect of L-thyroxine either alone or in combination with melatonin on some reproductive hormones (ng/ml) in the serum of male rats.	105
	Tables of paper 3	
1	Effect of L-thyroxine either alone or in combination with melatonin on performance trait of male rats.	143
2	Effect of L-thyroxine alone and in combination with melatonin on glucose (mg/dl) level in the serum of male rats.	144
3	Effect of L-thyroxine either alone or in combination with melatonin on lipid profile the serum of male rats.	144

LIST OF FIGURES

Figure No.	Figure title	Page No.
	Figures of Review of literature	
1	Melatonin synthesis: in the pineal gland and other different organs, melatonin is synthesized form its precursor (tryptophan), in a steps which include different enzymes.	20
2	Melatonin metabolism.	21
3	Pathway of Melatonin synthesis in the pineal gland.	23
	Figures of Paper 1	
1	Effect of L-thyroxine either alone or in combination with melatonin on serum T4, T3 and TSH of male rats at 11 th day of experiment.	59
2	Effect of L-thyroxine either alone or in combination with melatonin on serum T4, T3 and TSH of male rats at 22 nd day of experiment.	59
	Figures of Paper 2	
1	Effect of L-thyroxine either alone or in combination with melatonin on weekly body weight (g) (a) and relative testis weight (%) (b) of male rats.	106
2	Effect of L-thyroxine either alone or in combination with melatonin on thyroid activity (a, b and c) in the serum of male rats.	107

2	1	400
3	Effect of L-thyroxine either alone or in combination with melatonin on total antioxidant level. (mM/l) in the serum of male rats.	108
4	Effect of L-thyroxine either alone or in combination with melatonin on superoxide dismutase (SOD) activity (U/g tissue) in the Heart (a), Kidney (b) and Liver (c) tissues of male rats.	109
5	Effect of L-thyroxine either alone or in combination with melatonin on reduced glutathione (GSH) activity (mg/g tissue) in the Heart (a), Kidney (b) and Liver (c) tissues of male rats.	110
6	Effect of L-thyroxine either alone or in combination with melatonin on malondialdehyde (MDA) concentration (nmol/g tissue) in the Heart (a), Kidney (b) and Liver (c) tissues of male rats.	111
7	Histopathological findings of liver, kidney, heart and testis of control group with liver, kidney and heart of hyperthyroid group (H&E).	112
8	Histopathological findings of heart and testis of hyperthyroid group with liver, kidney, heart and testis of L-thyroxine plus 1 mg melatonin co-administrated group (H&E).	113
9	Histopathological findings of liver, kidney, heart and testis of L-thyroxine plus 5 and 10 mg melatonin coadministrated groups (H&E).	114
	Figures of Paper 3	
1	Effect of L-thyroxine either alone or in combination with melatonin on serum T4, T3 and TSH of male rats at 11 th and 22 nd days of experiment.	123
2	Histopathological findings of thyroid gland of control, hyperthyoid and L-thyroxine plus (1 mg, 5 mg and 10 mg) melatonin co-administrated groups (H&E).	145

LIST OF ABBREVIATION

Abbreviation	Complete words
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
AP site	(A-purine or A-pyrimidine) site
AST	Aspartate aminotransferase
BER	Base-excision repair
BW	Body weight
BWG	Body weight gain
Camp	Cyclic adenosine monophosphate
CAT	Catalase
CIH	chronic intermittent hypoxic
D1	Deiodinases type 1
D2	Deiodinases type 2
D3	Deiodinases type 3
DNA	Deoxyribonucleic acid
DPA	diphenylamine assay
EE	Entero-endocrine cell
FCR	Feed conversion ratio
FSH	Follicle stimulating hormone
GFR	Glomerular filtration rate
GGT	Gamma glutamyl-transferase
GH	Growth hormone
GHRH	Growth hormone releasing hormone

GIT	Gastrointestinal tract
GPx	Glutathione peroxidase
GSH	Glutathione
GST	Glutathione-S-transferase
Hb	Hemoglobin
НСТ	Hematocrite
HDL	High density lipoprotein
HIOMT	Hydroxyindole-O-methyl transferase
HPLC	High performance liquid
	chromatography
HT	Hyperthyroidism
I/P	Intra-peritoneal
IFN-α	Interferon alpha
ΙΕΝ-γ	Interferon gamma
IL- 10	Interleukin 10
IL-12	Interleukin 12
IL-2	Interleukin 2
IL-6	Interleukin 6
LBD	Ligand-binding domain
LBP	Liver biochemical parameters
LDL	Low density lipoprotein
LH	Luteinizing hormone
LPO	Lipid peroxidation
MCH	Mean corpuscular hemoglobin
MCV	Mean corpuscular volume

MDA	Malondialdehyde
MT1	Melatonin receptor 1
MT2	Melatonin receptor 2
NAT	Serotonin-N-acetyl transferase
NK	Natural killer cell
NO	Nitric oxide
ОН	Hydroxyl radical
OS	Oxidative stress
PVR	Peripheral vascular resistance
RBF	Renal blood flow
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
SC	Serum creatinine
SCN	Suprachiasmatic nucleus
SHBG	Steroid hormone binding globulin
SOD	Superoxide dismutase
STC	Serum total cholesterol
SUN	Serum urea nitrogen
T3	Triiodothyronine
T4	Thyroxine hormone
TAC	Total antioxidant Capacity
THR	Thyroid hormone receptor
THRa	Thyroid hormone receptor-a
THRb	Thyroid hormone receptor-b
TRH	Thyroid releasing hormone

TSH	Thyroid stimulating hormone

Chapter (1)

INTRODUCTION

1. INTRODUCTION

Thyroid hormones play a critical roles in cellular metabolism and regulate many pathways that are incorporated in the metabolism of carbohydrates, proteins and lipids in several tissues (Cicatiello et al., 2018). Moreover, they are required for normal function of nearly all tissues, with main effects on oxygen consumption and metabolic rate (Ma et al., **2004).** In addition, thyroid hormones play an important role in the modulation of antioxidant systems and oxidative stress (Mancini et al., 2013). Furthermore, they have a critical role in regulation and development of reproduction and testis function by controlling the function of Sertoli cells and Levdig cells (Korejo et al., 2016), they are responsible for reproductive hormonal changes and alterations in development of the reproductive system (Fadlalla et al., 2017). However, hyperthyroidism induces a hypermetabolic state characterized by increased resting energy loss, decreased cholesterol levels, increased lipolysis and gluconeogenesis followed by body weight loss (Mullur et al., 2014). Hypermetabolic state in hyperthyroidism is associated with tissue oxidative damage and deterioration of antioxidant system (Varghese et al., 2001). Furthermore, hyperthyroid tissue exhibit an increased reactive oxygen species and reactive nitrogen species production which cause severe oxidative damage nearly to all organs and affect their functions (Venditti and Meo, 2006).