

Assessment of Side Effects of Most Commonly used Antiepileptic Drugs in Pediatrics

Thesis

Submitted for Partial Fulfilment of Master Degree in **Pediatrics**

By

Wafaa Lotfy Soliman Mohammed

M.B.B.Ch., Faculty of Medicine, Ain Shams University (2014)

Under Supervision of

Prof. Iman Ali Elagouza

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Prof. Dr. Maha Mohamed El Gaafary

Professor of Community Medicine and Public Health Faculty of Medicine, Ain Shams University

Dr. Maha Zakariya Ramadan Mohammed

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Iman Ali Elagouza**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. Maha**Mohamed El Gaafary, Professor of Community

Medicine and Public Health, Community, Environmental
and Occupational Medicine, Faculty of Medicine, Ain

Shams University, for her sincere efforts, fruitful
encouragement.

I am deeply thankful to **Dr. Maha Zakariya**Ramadan Mohammed, Lecturer of Pediatrics, Faculty
of Medicine, Ain Shams University, for her great help,
outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Wafaa Jotfy Soliman Mohammed

Tist of Contents

Title	Page No.
List of Tables	
List of Figures	10
List of Abbreviations	11
Introduction	1 -
Aim of the Work	4
Review of Literature	
• Epilepsy	5
Antiepileptic Drugs	
Patients and Methods	
Results	
Discussion	
Summary	
Conclusion	
Study Limitations	
Recommendations	
References	
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table 1:	Molecular targets and clinical indication of AEDS	
Table 2:	AED daily dosage and PK interaction with other AEDs	ctions
Table 3:	Most commonly reported side effection anti-epileptic drugs	
Table 4:	Descriptive statistics showing age gender of patients treated with VPA.	and
Table 5:	Descriptive statistics showing data weight and diagnosis of patient tr	about
Table 6:	Descriptive statistics of patients tr with VPA as regard Frequency of se Tolerance of side effects, VPA dose duration	eated izure, e and
Table 7:	Descriptive statistics of patients tr with VPA as regard Frequency of effects.	reated f side
Table 8:	Descriptive statistics showing data laboratory analysis of patient treated	about
Table 9:	Descriptive statistics showing age gender of patients treated with LEV.	and
Table 10:	Descriptive statistics showing data weight and diagnosis of patient tr	about
Table 11:	Descriptive statistics of patients tr with LEV as regard Frequency of se Tolerance of side effects, LEV doses	reated izure, s and
Table 12:	duration Descriptive statistics of patients tr with LEV as regard Frequency of effects	reated f side

Table No.	Title	Page	No.
Table 13:	Descriptive statistics showing data laboratory analysis of patient treated	l with	
Table 14:	LEV Descriptive statistics showing age gender of the studied sample of pa treated with CBZ.	and tients	
Table 15:	Descriptive statistics showing data weight and diagnosis of patient tr with CBZ.	about eated	81
Table 16:	Descriptive statistics of patients to with CBZ as regard Frequency of se Tolerance of side effects, CBZ dose	eated izure,	01
Table 17:	duration Descriptive statistics of patients tr with CBZ as regard Frequency of	eated side	82
Table 18:	effects Descriptive statistics showing data laboratory analysis of patient treated CBZ.	about	83
Table 19:	Descriptive statistics showing age gender of patients treated with V LEV	PA +	
Table 20:	Descriptive statistics showing data weight and diagnosis of patient tr with VPA+LEV.	about eated	
Table 21:	Descriptive statistics of patients to with VPA+LEV as regard Frequent seizure, Duration and Doses	cy of	87
Table 22:	Descriptive statistics of patients to with VPA+LEV as regard Frequent side effects.	reated acy of	

Table No.	Title	Page	No.
Table 23:	Descriptive statistics showing data laboratory analysis of patient treated VPA +LEV	l with	89
Table 24:	Descriptive statistics showing age gender of patients treated with C	and BZ +	90
Table 25:	Descriptive statistics showing data weight and diagnosis of patient tr with CBZ+LEV	about eated	
Table 26:	Descriptive statistics of patients to with CBZ+LEV as regard Frequent seizure, Duration, Doses	reated cy of	
Table 27:	Descriptive statistics of patients tr with CBZ+LEV as regard Frequent side effects	reated cy of	
Table 28:	Descriptive statistics showing data laboratory analysis of patient treated CBZ + LEV.	about l with	
Table 29:	Descriptive statistics showing age gender of patients treated with VCBZ.	and VPA&	95
Table 30:	Descriptive statistics showing data weight and diagnosis of patients tr with CBZ+VPA.	about	96
Table 31:	Descriptive statistics of patients to with VPA+CBZ as regard Frequen	cy of	
Table 32:	seizure, Duration and Doses	reated acy of	
Table 33:	Descriptive statistics showing data laboratory analysis of patients tr	about eated	98
	with VPA + CBZ		99

Table No.	Title	Page	No.
Table 34:	Descriptive statistics showing age gender of patients treated with Tl	PM +	100
Table 35:	Descriptive statistics showing data weight and diagnosis of patients to with TPM+LEV. (n = 39)	about eated	
Table 36:	Descriptive statistics of patients to with TPM+LEV as regard Frequent seizure, Tolerance of side effects, Dur	cy of ration	100
Table 37:	and Doses	eated egard	
Table 38:	Descriptive statistics showing data laboratory analysis of patient treated TPM &LEV.	about l with	
Table 39:	Descriptive statistics showing age gender of patients treated with L'LEV	and TG +	
Table 40:	Descriptive statistics showing data weight and diagnosis of patient tr with LTG+LEV.	about eated	
Table 41:	Descriptive statistics of patients to with LTG+LEV as regard Frequent seizure, Tolerance of side effects, Dur	reated acy of ration	107
Table 42:	Descriptive statistics of patients tr with LTG +LEV as regard Frequer side effects.	reated acy of	
Table 43:	Descriptive statistics showing data laboratory analysis of patient treated LTG& LEV.	about l with	

Table No.	Title	Page 1	No.
Table 44:	Comparison of VPA side effects with and CBZ side effects.		110
Table 45:	Comparison of VPA side effects wit combination with LEV and CBZ	th its	
Table 46:	Comparison of LEV side effects wit combinations VPA, CBZ, TPM and LT		114
Table 47:	Comparison of CBZ side effect wit combinations LEV and VPA	th its	
Table 48:	Correlation between dose of VPA wiside effects, using Spearman's correlation coefficient (rs), in partreated with VPA	rank tients	117
Table 49:	Correlation between dose of LEV wiside effects, using Spearman's correlation coefficient (rs), in partreated with LEV.	rank tients	118
Table 50:	Correlation between dose of CBZ wiside effects, using Spearman's correlation coefficient (rs), in partreated with CBZ.	th all rank tients	
Table 51:	Correlation between dose of TPM wi side effects, using Spearman's correlation coefficient (rs), in patients to with TPM.	th all rank reated	
Table 52:	Correlation between dose of LTG wiside effects, using Spearman's correlation coefficient (rs), in partreated with LTG.	th all rank tients	

List of Figures

Fig. No.	Title	Page No.
Figure 1:	A Basic seizure classification. B seizure classification	-
Figure 2:	Gender distribution among the patients	
Figure 3:	Antiepileptic drugs distribution of studied patients.	~
Figure 4:	Digestive disorders distribution a main groups of AEDs	O
Figure 5:	BAEs distribution among the 5 m of AEDs	
Figure 6:	Neurological side effects distribute the 5 main groups of AEDs	O

Tist of Abbreviations

Abb.	Full term
AEDs	.Anti epileptic drugs
	.Behavioral adverse effects
CBZ	.Carbamazepine
CLB	.Clobazam
CZP	.Clonazepam
ESL	.Eslicabazine
ETS	. Ethosuximide
FBM	. Flbamate
FS	.Focal seizure
GIT	.Gastro-intestinal tract
<i>GPT</i>	. Gabapentin
GTCS	.Genaralized tonic clonic seizure
GVG	.Vigabatrin
LCS	. La cosamide
<i>LEV</i>	. Levetira cetam
LGS	.Lennox gastaut syndrome
<i>LTG</i>	. La motrigine
<i>OXC</i>	.Oxcarbazepine
PB	. Phenobarbital
PER	. Perampanel
PGB	.Pregabalin
PHT	.Phenytion
RTG	.Retigabine
<i>RUF</i>	. Rufinamid

Tist of Abbreviations cont...

Abb.	Full term	
SJS	Steven johnessen syndrome	
STM	Sulthiame	
STP	Stiripentol	
<i>TEN</i>	Toxic epidermal necrolysis	
TGB	Tiagabine	
<i>TPM</i>	Topiramate	
<i>VPA</i>	Valproic acid	
ZNS	Zonisamide	

Introduction

pilepsy is the most common serious neurological disorder worldwide. It affects all age groups and crosses all geographic boundaries; although this distressing condition remits in some people, many will have epilepsy throughout their lives, About 50 million people worldwide have epilepsy, and nearly 90% of epilepsy occurs in developing countries mainly due to poor medical services (Ba-Diop et al., 2014).

In Egypt, the prevalence was 6.98 / 1000; it became clearer that people with epilepsy are socially discriminated against on the ground of wide-spread lack of knowledge, negative public attitudes, and misconceptions about the disease (El-Tallawy et al., 2012). The social problems met by students with epilepsy as a result of negative attitudes and beliefs are enormous and the attitude and knowledge of teachers on adulthood epilepsy where that is likely to influence the educational performance of students with the disease (Al-Hashemi et al., 2016).

Antiepileptic drugs (AEDs) have both negative and positive effects on cognition and behavior. AEDs are able to improve cognition and behavior, which has been attributed to reduction of seizure activity, and modulating effect on neurotransmitters and their psychotrophic effect. AEDs reduce neuronal irritability and increase postsynaptic inhibition or alter synchronization of neural networks to decrease excessive

neuronal excitability associated with seizure development and secondary spread of epileptic activity to the surrounding normal brain (Meador et al., 2005). However, excessive reduction of neuronal excitability may result in slowed motor and speeds, and poor attention and memory psychomotor processing, which are common side effects of sodium channel blockade and increasing GABAergic inhibitory activity, It is not surprising that patients with epilepsy are more susceptible to the adverse behavioral effects of AEDs than other populations, possibly due to the disease associated structural or functional changes that increase their risk of psychiatric disorders (Beltramini et al., 2015).

The primary goals of AED treatment are to achieve complete seizure freedom, ideally without adverse events, reduce morbidity, mortality, and seizure-related accidents, and improve quality of life (Lee et al., 2014). In two-thirds of the patients with epilepsy these goals are feasible with optimum AED therapy (*Luciano and Shorvon*, 2007).

Adverse effects of AEDs are common and result in treatment discontinuation in up to 25 % of patients. The profile of adverse effects varies greatly among AEDs and markedly affects drug selection for individual patients. The most adverse effects like impairment, common cognitive coordination difficulties, and other CNS-related adverse effects are predictable, dose dependent, and reversible. They are of particular concern in patients who work or study. Idiosyncratic

adverse reactions are unexpected events that cannot be explained by known mechanisms of action. Typically, they are not related to dose and they are associated with high risk of morbidity or even mortality. Some of them, like weight gain, can negatively affect treatment adherence (Perruca and Gilliam, 2012).

The incidence of adverse effects is an important issue when prescribing AEDs, as some of the most effective medications for seizures are associated with a considerable degree of toxicity. Studies indicate that drug tolerability is a significant limiting factor in treatment maintenance, and drug retention rates are often determined by side-effect profiles (Bootsma et al., 2009).