

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The effect of *Nigella sativa* oil versus metformin on the biochemical parameters and clinical outcome of newly diagnosed type 2 diabetes mellitus patients

Thesis presented by

Hebatallah Ahmed Mohamed Moustafa

Master of Pharmaceutical sciences, 2012
Clinical pharmacy
Faculty of Pharmacy, Ain Shams University
Submitted for the fulfillment of the requirements of

Doctor of Philosophy (PhD) degree in pharmaceutical sciences (Clinical pharmacy)

Under supervision of:

Dr. Abdel Nasser Badawy Singab, PhD Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University

Dr. Nagwa Ali Sabri, PhD
Professor and head of Clinical
Pharmacy
department, Faculty of Pharmacy,
Ain Shams University

Dr. Mohamed Reda Halawa, PhD Professor and head of endocrinology department, Faculty of medicine, Ain Shams University Dr. Lamia Mohamed El Wakeel, PhD Professor of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University

Dr. Al Shaymaa Amin El-Bahy, PhD Lecturer of pharmacology and toxicology, Faculty of pharmacy, Heliopolis University

Faculty of Pharmacy, Ain Shams University 2020

Contents	Page
List of abbreviations	iii
List of tables	vii
List of figures	viii
Acknowledgement	ix
Dedication	X
Abstract	xi
Introduction	1
Review of literature	3
Diabetes mellitus	3
Prevalence of diabetes mellitus	3
Classification of diabetes mellitus	3
Etiology and risk factors of DM	4
Pathogenesis of diabetes mellitus	7
Screening and prevention of DM	8
Clinical picture of DM	9
Diagnosis of DM	9
DM complications	12
Diabetes mellitus management	16
Metformin, the classic first line for T2DM treatment:	33
Metformin mechanism of action	33
Pharmacokinetics of metformin	33
Metformin's effects on glycemic profile	34
Metformin's effect on weight	34
Metformin cardiovascular benefits	35
Metformin's protection against cancer	36
Metformin's adverse effects	36
Nigella sativa as a phytotherapeutic approach to treat T2DM:	38
Natural health products (NHPs) as potential agents for the treatment	38
of diabetes mellitus	
Nigella sativa: Origin and phytochemistry	39
Various pharmacological and clinical actions of Nigella sativa	41

PhD Thesis 2020 Page i

Nigella sativa pharmacological and clinical beneficial effects in	43
T2DM	
Adverse effects of Nigella sativa	48
Aim of the study	50
Patients and methods	51
Results	60
Discussion	71
Conclusion	76
Recommendation	77
Limitation	78
Summary	79
References	80
Appendices	
Appendix 1	a
Appendix 2	d
Appendix 3	f
Appendix 4	g
Appendix 5	h
Appendix 6	i
Appendix 7	j
Arabic summary	1

PhD Thesis 2020 Page ii

AGI	α-glucosidase inhibitors
ASA	Acetylsalicylic acid
ACC	Acteyl-CoA carboxylase
AMP	Adenosine monophosphate
AMPK	Adenosine monophosphate-activated protein kinase
ATP	Adenosine triphosphate
K _{ATP}	Adenosine triphosphate dependent potassium channels
AGEs	Advanced glycation end-products
ALT	Alanine aminotransferase
ADA	American Diabetes Association
ACEI	Angiotensin-converting-enzyme inhibitors
ARBs	Angiotensin II receptor blockers
AST	Aspartate aminotransferase
ASCVD	Atherosclerotic cardiovascular disease
%B	β-cell function
BMI	Body mass index
CVD	Cardiovascular disease
CAT	Catalase
CKD	Chronic kidney disease
CAM	Complementary and alternative medicine
CHF	Congestive heart failure
CGM	Continuous glucose monitoring
CSII	Continuous subcutaneous insulin infusion
CAD	Coronary artery diseases
COX-2	Cyclooxygenase-2
CFRD	Cystic fibrosis–related diabetes
DM	Diabetes mellitus
DKA	Diabetic ketoacidosis
DPN	Diabetic peripheral neuropathy
DASH	Dietary Approaches to Stop Hypertension
DPP-4	Dipeptidyl peptidase-4

PhD Thesis 2020 Page iii

eGFR	Estimated glomerular filtration rate
ECFV	Extracellular fluid volume
FPG	Fasting plasma glucose
FDA	Food and Drug Administration
FFA	Free fatty acids
GERD	Gastroesophageal reflux disease
GIT	Gastrointestinal tract
GDM	Gestational diabetes mellitus
GFR	Glomerular filtration rate
GLP-1	Glucagon-like peptide-1
GIP	Glucose-dependent insulinotropic polypeptide
GLUT 4	Glucose transporter 4
GADAs	Glutamic acid decarboxylase autoantibodies
A1C	Glycated hemoglobin
GI	Glycemic index
GL	Glycemic load
HF	Heart failure
HFpEF	Heart failure with preserved ejection fraction
HFrEF	Heart failure with reduced ejection fraction
HGP	Hepatic glucose production
HCV	Hepatitis C virus
HDL	High-density lipoprotein
HOMA	Homeostatic model assessment
2h PP	2 hours post prandial
HLA	Human leukocyte antigen
HMG-CoA	3-hydroxy-3-methylglutaryl coenzyme A reductase
reductase	
HBOT	Hyperbaric oxygen therapy
HHS	Hyperosmolar hyperglycemic state
HTN	Hypertension
IFG	Impaired fasting glucose

PhD Thesis 2020 Page iv

IGT	Impaired glucose tolerance
IAAs	Insulin autoantibodies
IR	Insulin resistance
%S	Insulin sensitivity
IL	Interleukin
ICA	Islet cell antibody
LADA	Late-onset autoimmune diabetes in adults
LKB1	liver kinase B1
LOPS	Loss of protective sensation
LDL	Low-density lipoprotein
MACE	Major adverse cardiovascular events
MODY	Maturity-onset diabetes of the young
LD50	Median lethal dose
MNT	Medical nutrition therapy
NHPs	Natural health products
NPH	Neutral protamine Hagedorn
NODAT	New onset diabetes after transplantation
NS	Nigella sativa
NO	Nitric oxide
NF-kB	Nuclear factor kappa-light-chain-enhancer of activated B cells
OADs	Oral anti-diabetic drugs
OGTT	Oral glucose tolerance test
PAD	Peripheral arterial disease
PVD	Peripheral vascular disease
PPARγ	Peroxisome proliferator-activated receptor γ
PTEN	Phosphatase and tensin homolog
PI3K-Akt	Phosphatidylinositol 3-kinase and Protein Kinase B pathway
PCOS	Polycystic ovary syndrome
PCSK9	Proprotein convertase subtilisin/kexin type 9
RCTs	Randomized controlled trials
ROS	Reactive oxygen species

PhD Thesis 2020 Page v

RBCs	Red blood cells
SMBG	Self-monitoring of blood glucose
Sr Cr	Serum creatinine
SGLT2	Sodium-glucose co-transporter 2
SPSS	Statistical Package for Social Sciences
SU	Sulfonylurea
SUR	Sulfonylurea receptor
SOD	Superoxide dismutase
TZD	Thiazolidinedione
TQ	Thymoquinine
TCM	Traditional Chinese medicine
TG	Triglycerides
TAC	Total antioxidant capacity
TC	Total cholesterol
TOS	Total oxidant status
TNF-α	Tumor necrosis factor
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
WC	Waist circumference
WHO	World Health Organization

PhD Thesis 2020 Page vi

Table number	Title	Page
Table (1)	Baseline comparison between metformin and NS groups in demographics and history	61
Table (2)	End of study-comparison between metformin and NS groups in the occurrence of diabetes symptoms	63
Table (3)	Comparison of age, disease duration, and anthropometric parameters between metformin and NS groups over the study period	64
Table (4)	Comparison of glycemic control between metformin and NS groups over the study period	66
Table (5)	Comparison of biochemical parameters between metformin and NS groups over the study period	68

PhD Thesis 2020 Page vii

Title	Page
Mechanisms by which Nigella sativa decreases fasting	47
plasma levels of blood glucose	
CONSORT study flow diagram	60
Change of fasting blood glucose concentration from baseline to end of study in metformin and NS groups	70
Percent change of fasting blood glucose concentration from baseline to end of study in metformin and NS groups	70
]	Mechanisms by which Nigella sativa decreases fasting plasma levels of blood glucose CONSORT study flow diagram Change of fasting blood glucose concentration from baseline to end of study in metformin and NS groups Percent change of fasting blood glucose concentration

PhD Thesis 2020 Page viii

Acknowledgements

I am deeply thankful to "GOD" by the grace of whom, this work was possible.

I am greatly indebted to **Prof. Dr. Abdel Nasser Singab,** professor of phytochemistry, vise-president of Ain-Shams univeristy, for his kind supervision, direction, encouragement, and scientific support to make this work appear in its best form.

I wish to express my deepest thanks and gratitude to **Prof. Dr. Nagwa Ali Sabri**, professor of clinical pharmacy and head of clinical pharmacy department, faculty of pharmacy, Ain Shams university, for her sincere guidance, useful remarks, and technical assistance and awesome support of this work.

I wish also to express my deepest gratitude and gratefulness to **Associate Prof. Lamiaa El- Wakeel**, clinical pharmacy department, faculty of pharmacy, Ain Shams university, for her kind guidance, encouragement, and revision of all scientific material in this work. Without her great effort, this work would have not been finished. She was there for me in each and every step of this work, from point of research selection till the day of publication.

I am also grateful to **Prof. Mohamed Reda Halawa**, head of Endocrinology department, faculty of medicine, Ain Shams university for his kind help, guidance and supervision of practical work.

I would like to thank **Cid pharmaceutical company** for providing the Cidophage drug and **Pharco pharmaceutical company** for providing the Baraka capsules used in this study.

I would like to thank **all patients**, who agreed to be a part of this study.

PhD Thesis 2020 Page ix

Dedication

I would like to thank my parents (Ahmed and Salwa), my brother (Ehab), and my beautiful nieces (Ann and Alla) for their endless love, support, prayers, and help through some very tough times. I dedicate this work to them.

PhD Thesis 2020 Page x

Abstract

Purpose Nature is a phenomenal treasure of remedies. Numerous previous studies reported that *Nigella sativa* (NS) improved glycemic control, reduced insulin resistance, and improved lipid profile. NS was never investigated before as a monotherapy for newly diagnosed type 2 diabetes mellitus (T2DM) patients. Our aim was to investigate the potential metabolic benefits of NS monotherapy in newly diagnosed T2DM patients.

Method Prospective, open-label randomized clinical trial at outpatient endocrinology clinic at Ain-Shams University hospital. Eligible patients were randomly assigned to either metformin tablets or NS oil capsules. Both groups received treatment for 3 months. Glycemic index (FBG, 2hpp, A1C, insulin sensitivity %S, secretory function %B, insulin resistance IR), lipid profile (TC, LDL, HDL, TG), liver and kidney functions (AST, ALT, Sr cr), total antioxidant capacity (TAC), weight, waist circumference (WC) and body mass index (BMI) were assessed at baseline and at the end of treatment period.

Results A concentration of 1350 mg/day NS oil in newly diagnosed T2DM patients was inferior to metformin in terms of lowering FBG, 2 h pp, and A1C or increasing %B. However, NS was comparable to metformin in lowering weight, WC, and BMI significantly. NS was comparable to metformin in regards of their effects on fasting insulin, %S, IR, ALT, TC, LDL, HDL, TG, and TAC. Metformin showed significant increase in AST and creatinine which were reserved in NS group.

Conclusion NS administration in newly diagnosed T2DM was tolerable with no side effects as compared to metformin; however, it was inferior to metformin in terms of diabetes management.

Keywords •Newly diagnosed type 2 diabetes mellitus • Nigella sativa • Metformin

PhD Thesis 2020 Page xi