

Role of Platelets Rich Plasma (PRP) on the Outcome of Zone II Flexor Tendon Repair and Proximal Interphalangeal Joint (PIPJ) Range of Motion

Thesis

Submitted For Partial Fulfillment of Master Degree in Plastic, Burn and Maxillofacial Surgery

By

Ayman Gamal Abdelmongy Elsayed
M.B.B.CH; Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Amr Magdy Sayed Mahmoud

Professor of Plastic, Burn and Maxillofacial Surgery Faculty of Medicine, Ain Shams University

Prof. Dr. Neven Mahmoud Taha Fouda

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmad Fathi El Sherif

Professor of Plastic, Burn and Maxillofacial Surgery
Faculty of Medicine, Ain Shams University

Assist, Prof. Dr. Ahmed Mohamed Gad

Assistant Professor of Plastic, Burn and Maxillofacial surgery

Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALIAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Amr Magdy Sayed Mahmoud, Professor of Plastic, Burn and Maxillofacial Surgery Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Prof. Dr. Neven Mahmoud Taha Fouda, Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Prof. Dr. Ahmad Fathi El Sherif, Professor of Plastic, Burn and Maxillofacial Surgery Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I wish to introduce my deep respect and thanks to Assist. Prof. Dr. Ahmed Mohamed Gad, Assistant Professor of Plastic, Burn and Maxillofacial surgery Faculty of Medicine, Aim Shams University, for his kindness, supervision and cooperation in this work.

Ayman Gamal

List of Contents

Title	Page No.
List of Tables	
List of Figures	
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Anatomy of the Flexor Tendons	4
Flexor Tendon Repair	12
Biology of Tendon Repair and Tendon Hea	ling 19
Rehabilitation After Flexor Tendon Injury	23
Platelet-Rich Plasma (PRP)	28
Patients and Methods	39
Results	47
Discussion	55
Summary	61
Conclusion and Recommendations	
References	64
Arabic Summary	

List of Tables

Table No).	Title		Page No.	 _
Table (1):	Effect of grow	vth factors	in platelets	s3	0
Table (2):	Buck - Gramof overall operated fing	surgical o	utcome o	f the	4
Table (3):	Comparison group) and according to	group II	(control	group)	8
Table (4):	Comparison 6	etween Gro	up I (stud)	y group) an	d Group II (co
Table (5):	Comparison group) and according to weeks.	group II Buck-Gran	(control nko criteri	group) a at 6	n
Table (6):	Comparison group) and according to weeks.	between group II Buck-Gram	group (control nko criteria	(study group) a at 12	

List of Figures

Fig. No.	Title Page	No.
Figure (1): Figure (2):	The relation between FDP and FDS Finger pulley system	
Figure (3):	Pulley system of thumb	
Figure (4):	Zones of Flexor tendon injuries	
Figure (5):	Sub-divisions of zone II	
Figure (6):	Blood supply of both FDP and FDS	
Figure (7):	Two-strand repair techniques	
Figure (8):	Kubota multi-strands repair	
Figure (9):	McLarney's four-strand cruciate repair	
Figure (10):	Peripheral sutures	
Figure (11):	Post-operative immobilization	24
Figure (12):	Modified Kleinert rehabilitation program	n 26
Figure (13):	Hinged dorsal blocking splint typically used in early active mobilization protocols	, 1)
Figure (14):	A sample of venous blood was anticoagulated in a citrated tube	
Figure (15):	Three layers were obtained after the first centrifugation spin	
Figure (16):	Soft beliet of platelets appeared after the second spin then homogenized with lower third of plasma.	'n
Figure (17):	PRP in 22 gauge needle syringe just perior to injection	
Figure (18):	Free nail distal palm crease distance	45
Figure (19):	Total extension deficit measurement using 180 degrees goniometer	

List of Figures cont...

Fig. No.	Title	Page No.	
Figure (20):	Comparison between G	Proup I (study group) and	l Group II (d
Figure (21):	Bar chart between q without PRP injection Buck-Gramko criteria		
Figure (22):	Bar chart between gro	ups with and without PR	P injection
Figure (23):	Total extension deficit	of 25 years old male pat	tient with c
Figure (24):	Active range of motion	n of 25 years old male pa	tient with o
Figure (25):	Total extension deficit	of 30 years old male pat	tient with c
Figure (26):	Active range of motion	n of 30 years old male pa	tient with d

List of Abbreviations

Abb. Full term

ACDAcid citrate dextrose
ADSCsAdipose derived stem cells
APAnteroposterior
bFGFBasic fibroblast growth factor
bMP Bone morphogenetic proteins
BMSCsBone marrow stem cells
DIPDistal interphalangeal
DIPJDistal interphalangeal joint
ECMExtra-cellular matrix
EGF Endothelial growth factor
ERKExtracellular-regulated kinase
FAKFocal adhesion kinase
FDP Plexor Digitorum Profundus
FDS Slexor Digitorum Superficialis
FPLFlexor pollicis longus
HGFHepatocyte growth factor
IGF-1 Insulin like growth factor
ILGF Insulin like growth factor
IPInterphalangeal
L-PRFLeucocyte- and platelet-rich fibrim
L-PRPLeucocyte- and PRP
MCPMetacarpophalangeal
MCPJMetacarpal phalangeal joint
PDGFPlatelet-derived growth factor
PIPProximal interphalangeal
PIPJProximal interphalangeal joint

List of Abbreviations Cont...

Abb.	Full term

P-PRF......Pure platelet-rich fibrin
P-PRP......Pure Platelet-Rich Plasma
PRP......Platelet-rich plasma
ROMRange of motion
SCX.....Scleraxis
TGF......Srleraxis
TGF.....Transforming growth factor
TSCs.....Tendon stem/progenitor cells
VEGF.....Vascular endothelial growth factor
WBCs.....White blood cells

Introduction

one II flexor tendon repair remains a surgical challenge due to the complex anatomy in the region. In this zone, both the flexor digitorum profundus and flexor digitorum superficialis must glide within a synovial sheath through a series of fibro-osseous pulleys. Normal motion of the proximal interphalangeal joint requires bony support, intact articular surfaces, unimpeded tendon gliding, and uncompromised integrity of the collateral ligaments and volar plate. Deficiency in one of these structural requirements can lead to loss of finger joint motion and decreased hand function. Obstacle in gliding, including scar formation or excess surgical knots negatively affect a patient's postoperative function. Early active and passive motion has been shown to improve healing and reduce adhesions (Hatanaka et al., 2000; Boyer et al., 2001; Chesney et al., 2011).

However, overly strenuous early mobility puts the repair at risk of rupture, which usually occurs within the first 3 weeks (*Nunley*, 2006; *Thomopoulos et al.*, 2010).

The published causes of failure of the repair including postoperative adhesions and stiffness among other complications are still a concern. They will continue to pose a challenge for scientists performing research into the mechanics and biology of flexor tendon repairs, especially in zone II.

1

Platelet-rich plasma (PRP) contains many of the growth factors thought to be important in tendon healing, including PDGF, IGF-1, TGF-\(\beta\), VEGF, bFGF, and EGF (Hsu and Chang, 2004; Alsousou et al., 2009).

appealing for clinical application as inexpensive source of growth factors. Being autologous, there is no concern for immunologic response. PRP is already widely used in orthopedics for treatment of musculoskeletal injuries and is sought to decrease inflammation of the tendons and hence decrease the risk of adhesions (Alsousou et al., 2009).

Clinical applications for PRP include rotator cuff repair, Achilles tendon repair, Achilles tendinopathy, and lateral epicondylitis; however, the efficacy of PRP is controversial (Barber et al., 2011; Chahal et al., 2012).

AIM OF THE WORK

The Aim is to study the effect of combination of PRP injection with physiotherapy on gliding and range of motion improvement after flexor tendon zone II injury.

Chapter 1

ANATOMY OF THE FLEXOR TENDONS

The flexor tendon system of the hand consists of the long flexor muscles originating from the forearm, their tendinous extensions, and the specialized digital flexor sheaths. These components work in harmony to produce smooth and efficient flexion of the digits of the hand (*De Maeseneer et al.*, 2015).

Fingers flexors:

The long flexor tendons of the fingers involve the Flexor Digitorum Superficialis (FDS), Flexor Digitorum Profundus (FDP) and Flexor pollicis longus (FPL). After exiting from the carpal tunnel and passing deep to the neurovascular structures in the proximal palm, the FDP tendon lies deep to the FDS tendon for each finger and each continues toward the fibrous flexor sheath for its respective finger. The FPL tendon exit from the carpal tunnel and runs through the thenar musculature toward its own fibrous flexor sheath, inserting into the base of the distal phalanx (*Torrie et al.*, 2010).

As the FDS enters the fibrous flexor sheath on the palmer aspect of the proximal phalanx, it splits encircling the FDP tendon and re-joins deep to it forming the Camper's chiasm (**Figure 1**) then inserts by separate slips into the middle phalanx. The FDP tendon runs through the fibrous flexor sheath

initially deep to the FDS, then superficial distal to Camper's chiasm and finally as the single tendon distal to the FDS insertion to be inserted into the base of the distal phalanx (Goggins et al., 2014).

Cadaveric studies in Japan estimate that it is totally absent in 2% of individuals (*Stein et al., 1990*), and a similar result of 2% was also reported in a clinical trial in Ireland by Thompson in 2002.

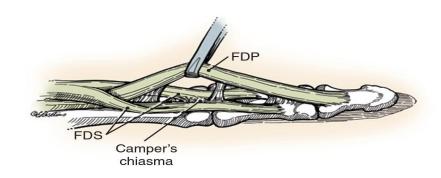


Figure (1): The relation between FDP and FDS (*Lippincott Williams and Wilkins*, 2011).

Flexor pulley system:

The flexor tendon pulleys are fibrous tissue condensations, which almost encircle the flexor tendons forming a fibro- osseous channel that functions to keep the tendons adjacent to the phalanges.

The function of the annular pulley is to allow smooth gliding of the tendon and prevent bowstringing, while the cruciate pulleys prevent sheath collapse and expansion during digital motion. It facilitates approximation of annular pulley during flexion (figure 2).

Five annular and three cruciate pulleys have been identified in each of the fingers. The first annular pulley (A1) is at the level of the metacarpal phalangeal joint (MCPJ). The majority of the fibers (2/3) arise from the palmar plate; the remainder (1/3) arises from the proximal portion of the proximal phalanx.

The second annular pulley (A2) is located over the proximal portion of the proximal phalanx, and the third (A3) is at the level of the proximal interphalangeal joint (PIPJ) and attaches to its palmar plate.

The first cruciate pulley (C1) is located between A2 and A3 over the distal portion of the proximal phalanx.

The fourth annular pulley (A4) is at the midportion of the middle phalanx. The second cruciate pulley (C2) is between A3 and A4, overlying the proximal portion of the middle phalanx.

The fifth annular pulley (A5) is located over the distal interphalangeal joint (DIPJ) and is attached to its palmar plate. The third cruciate pulley (C3) is located between A4 and A5 at the distal end of the middle phalanx (*Doyle*, *1988*; *Doyle*, *1989*; *Doyle*, *2001*).