

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Architecture Engineering

Programming the Motion of Building Façade Materials by Controlling their Latent Passive Response

A Thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Architectural Engineering

Submitted by

Rana Ahmed Bahaa El-Dabaa

BSc, Arab Academy for Science and Technology, 2011 MSc, Arab Academy for Science and Technology, 2016

Supervised by

Prof.Dr. Yasser Mohamed Mansour Assoc. Prof. Sherif Morad Abdelmohsen

Professor of Architecture Faculty of Engineering Ain shams University AssociateProfessor of Architecture
Faculty of Engineering
Ain shams University

Cairo - (2020)

Programming the Motion of Building Façade Materials by Controlling their Latent Passive Response

A Thesis submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Architectural Engineering

by

Rana Ahmed Bahaa El-Dabaa

BSc, Arab Academy for Science and Technology, 2011 MSc, Arab Academy for Science and Technology, 2016

Examiners Committee

Professor Dr. Yasser Hosny Saki Professor of Architecture, Helwan		
Professor Dr. Mostafa Refaat Isn Professor of Architecture, Ain Sha		
Professor Dr. Yasser Mohamed Professor of Architecture, Ain Shar	-14110041	
Associate Professor of Architecture		
Thesis Defense Date://		
Graduate Studies:		
Approval:		
Date:		
Approval of Faculty Committee:	Approval of University Committee	
Date	Date	

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Architectural Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Rana Ahmed Bahaa El-Dabaa

Signature

Date: 26- July- 2020

Rana El-Dabaa

Researcher Data

Name : Rana Ahmed Bahaa El-Dabaa.

Date of birth : 8th of June, 1989

Place of birth : Alexandria, Egypt

Last academic degree : Master of Science

Field of specialization : Architectural Engineering

Environmental and Computational

Design

University issued the degree : Arab Academy for Science, Technology

and Maritime Transport

Date of issued degree : 2016

Current job : Assistant lecturer at Arab Academy for

Science, Technology and Maritime

Transport, Cairo, Egypt

Acknowledgment

- I am grateful to Allah for giving me strength to accomplish this study –

This thesis is partially funded by **Bartlett's Fund for Science and Engineering Research Collaboration**, in a research project collaboration between Princeton university, American university in Cairo and University Roma Tre. I'm grateful for the fund provided and the **research team professors Dr. Sherif Abdelmohsen, Dr. Sigrid Adriaenssens and Dr. Stefano Gabriele, Dr. Passaint Massoud, Arch. Luigi Olivieri, Arch. Aly Magdy and Arch. Tasbih Mokbel.**

My sincere gratitude goes to my supervisor **Professor Yasser Mansour**, who assisted and supported me a lot. His wide knowledge, encouragement, and his logical way of thinking added a lot to me.

I would like to express my special appreciation and gratitude to my supervisor **Dr. Sherif Abdelmohsen** for orienting me through the research career and providing several collaboration opportunities that advanced the study. Your encouragement and guidance have provided the foundation for this thesis.

A heartfelt thank you goes to my lovely **family**; Grandmother, Mum, Dad, Sister, Mother and Father in law, for all the help and encouragement you gave me. Your prayers were my backbone. A very special thank you to my dear husband and my lovely daughter for their continuous support.

I would also like to thank all my **friends** specially; **Aya, Dina and Marwa** who supported and motivated me throughout this PhD journey.

I take this opportunity to express gratitude to the **professors and colleagues** at the **Department of Architecture and Environmental Design at Arab Academy for Science, Technology and Maritime Transport** for their support.

August 2020

Abstract

Typical motion mechanisms in adaptive skins compromise rigid kinematic mechanical systems with sensors, processors, and actuation devices, thus impeding the adoption of zero-energy buildings. This study is developing responsive low-cost adaptive building system that exploits latent properties of programmable materials, to passively respond to external stimulus. Composite programmable material "Hygromorphic Thermo-bimetals" $H_M T_M$ is proposed to respond to different weather conditions, specifically Egypt. $H_M T_M$ composite bilayer material is based on controlling both hygroscopic properties of wood that responds to variation in humidity and the difference in thermal coefficient of metals according to the variation in temperature. $H_M T_M$ passive motion mechanism is presented as a programmable system whose bilayer motion logic is controlled through the variation in both temperature and humidity. The significance of $H_M T_M$ composite is utilizing its infinite motion responses resulting from the hygroscopic properties of wood but is passively stimulated by the expansion of metal layer as the variation in temperature is the dominant factor in Egypt.

Despite efforts to develop working prototypes using several programmable materials, there is still no clear methodological framework for understanding and controlling the behaviour of these materials for using them for adaptive purposes. The study proposes a generative computational approach to track, analyse and program the $H_M T_M$ motion response as a shape shifting grammar. The study presents a method to link between the material tangible interface in a sealed environmental chamber and digital interface that has image analysis software "Kinovea" that captures and analyses the material motion and its angle of curvature, and digital simulation using Grasshopper plugin and Ladybug to study the effect of $H_M T_M$ motion responses on achieving different percentage of opening and shadow configurations in Cairo, Egypt. Shape and motion formal language grammars are used as a base to propose a generative computational approach for shape shifting materials specifically for $H_M T_M$ to encode the effect of $H_M T_M$ design parameters on the desired motion response.

Key words: Adaptive facades, programmable materials, hygroscopic properties of wood, Thermo-bimetals, passive motion response, grammars

Table of Contents

1. Introduction1
2. Research Problem
3. Research Objectives
4. Research Hypothesis
5. Research Value
6. Research Scope
7. Methodology6
8. Research Structure
Chapter 1: Wood as a Programmable Material 11
1.1. Classification of responsive materials
1.2. Hygromorphic Actuation Passive Mechanism
1.3. Utilizing Hygroscopic Design Parameters
1.4. Implementing Hygroscopic design in Adaptive Systems
1.5. Material Setup and Evaluation Methods to Program Wood's Motion 22
1.5.1. Physical Experiment Setup for the Wooden Samples
1.5.2. Image Analysis Method "Kinovea"
1.6. Extracting the hygroscopic design parameters through physical
experimental approach
1.6.1. Embedded hygroscopic parameters
1.6.2. Controlled hygroscopic parameters
1.7. Utilizing hygroscopic design parameters to encode wood's motion 44
1.8. Summary
Chapter 2: Encoding Hygromorphic Thermo-bimetals (H_MT_M) passive
notion response in Cairo's Climate49
$2.1. Introducing H_M T_M$ composite as a passive actuation mechanism in hot arid
climates
2.2. Material Setup and Evaluation Methods to Encode H _M T _M motion 53

2.2.1. Physical Experiment Setup for H _M T _M	54
2.2.2. Image Analysis Method "Kinovea" for H _M T _M	55
2.3. Extracting the H _M T _M Design Parameters to Encode its Passive Mo	
2.3.1. H _M T _M embedded parameters	58
2.3.2. H _M T _M controlled Parameters	62
2.4. Summary	67
Chapter 3: Implementation of H_MT_M Response Motion in Adaptive	
Facades	70
3.1. Utilizing H _M T _M shape shifting grammar in adaptive facades	
3.2. H _M T _M adaptive Shading Performance using Digital Simulation	71
3.3. Simulation Parameters	73
3.4. Digital Simulation Procedures	73
3.5. Evaluation Algorithm of Digital Simulation	74
3.6. Digital simulation Output for H _M T _M Tested configuration cases	75
3.6.1. Effect of H _M T _M Fixation Position on Façade performance	75
3.6.2. Effect of H _M T _M Isolated Controlled Parameters on Adaptive	Façade
Performance	77
3.7. Summary	80
Chapter 4: Deriving Computational Grammar for Adaptive Facades	
Generative Design	82
4.1.Computational Grammars	83
4.2. Motion Grammar Parameters and Logic	85
4.3. Programmable Materials Motion Grammar	86
4.4. Hygroscopic Design Motion Grammar	87
4.5. Thermo-bimetals Motion Grammar	92
4.6. Programming Hygromorphic Thermo-bimetal (H _M T _M) Motion Re	esponse
	93
$4.7.$ Deducing $H_{M}T_{M}$ variables effect on motion and its production rule	s99
4.8. Deriving Production Rules for Programming Simple Motion thr	ough
HyTy embedded properties	100

4	.8.1. Deriving base case grammars	1
4	.8.2. Analysing the angle of curvature for dimensional ratio variables 10	2
4	.8.3. Analysing the angle of curvature for grain orientation variables . 10	13
4	.8.4. Analysing the angle of curvature for the different material types 10	13
4	.8.5. Analysing angle of curvature for different material thickness 10	14
4.9.	Deriving Production Rules for Programming Complex Motion throug	ŗh
H_MT	M controlled properties	14
4	.9.1. H _M T _M Lamination Grammars	4
4	.9.2. H _M T _M Fixation Grammars	0
4.10	. Summary	2
Chanter	5: Discussion and Recommendations11	5
=	Discussion	
	.1.1. Hygromorphic thermo-bimetal programmable material	
	.1.2. Zero- energy consumption mechanism	
	.1.3. Generative Shape Shifting Facade Grammars	
	Future Recommendations 11	
	Limitation of the study	
	clusion	
	rences	
• •	endix 1:	
	endix 2:	
**	endix 3:	
• •	endix 4:	
	خطة 13	
	13	
	14المشكلة ا	
البحث	14	0.
البحث	14 فرضية	.0
البحث	قيمة	.0
1	14	2

List of Figures

Figure 1 . Research Structure
Figure 1-1. Addington and Schodek material's classification
Figure 1-2. Motion sequence of wood response when moisture content
increase
Figure 1-3. Reversible opening and closing mechanism of Spruce cones . 15
Figure 1-4. Motion mechanism of hygromorphic composite that relies on
passive and active layers with different shrinkage values
Figure 1-5. Hygroscopic design variables
Figure 1-6. Shape changing mechanism of wood, left natural wood response
to the increase of humidity, right: Programming three artificial samples with
1mm thickness response
Figure 1-7. Different lamination techniques with different passive layers . 18
Figure 1-8. Hygromorphic façade prototype reaction under different relative
humidity conditions
Figure 1-9. Controlling the response behavior of 3D printed wood in a
symetrical way
Figure 1-10. Hygromorphic skin on the left closed configuration and on the
right the opened configuration
Figure 1-11. Left - hygroscope exhibited at the Centre Pompidou, Paris, right-
Hygroskin climate responsive pavilion
Figure 1-12. Self-assembly and self-rigidizing structures
Figure 1-13. Experiment of the granular wood actuation in response to
moisture and its application in full scale granular pavilion
Figure 1-14. Wooden motion evaluation method
Figure 1-15. Experiment setup for the wooden samples
Figure 1-16. Evaluation method in Kinovea for wooden samples
Figure 1-17. Micro-structure of Softwood (Fir) and Hardwood (Beech) 27
Figure 1-18. Sequential difference in wood response between softwood (Fir)
and hardwood (Beech) when humidity levels increase
Figure 1-19. Effect of different wooden composite thicknesses on angle of
curvature when exposed to increase in humidity levels; Left initial state, right
maximum angle of curvature
Figure 1-20. Difference in the wood angle of curvature with 1.8 mm thickness
single layer and three laminated veneer layers with total 1.8 mm