

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering Electrical power and Machines Dept.

PERFORMANCE ENHANCEMENT OF VARIABLE SPEED WIND ENERGY CONVERSION SYSTEM

Master Thesis By

Eng. Mina Nabil Amin

Submitted in partial fulfillment of the Requirements for the Master Degree in Electrical Engineering

Supervised By

Prof. Dr. Almoataz Youssef Abdelaziz

Professor - Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Prof. Dr. Hany Mohamed Hasanien

Professor - Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Approval Sheet

For The thesis:

PERFORMANCE ENHANCEMENT OF VARIABLE SPEED WIND ENERGY CONVERSION SYSTEM

Presented by

Eng. Mina Nabil Amin

Submitted in partial fulfillment of the requirements for the Master degree in electrical engineering

Approved by

Name		Signature
Prof. Dr. Almoataz Youssef Ab	delaziz	
Prof. Dr. Hany Mohamed Hasar	nien	
Date:	/ /	

Examiners Committee

The thesis:

PERFORMANCE ENHANCEMENT OF VARIABLE SPEED WIND ENERGY CONVERSION SYSTEM

Presented by

Eng. Mina Nabil Amin

Submitted in partial fulfillment of the requirements for the Master degree in electrical engineering

Name, title and affiliation

Signature

- 1. Prof. Dr. Mohamed Ibrahim Elsayed
- 2. Prof. Dr. Ahmed Abd Elstar Abd El fatah
- 3. Prof. Dr. Almoataz Youssef Abdelaziz
- 4. Prof. Dr. Hany Mohamed Hasanien

Statement

This thesis is submitted to Ain Shams University in partial fulfillment of the requirements for Master degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name : Mina Nabil Amin

Signature:

Date : / / 2020

To

My wife, my brothers, my sister and their families.

Acknowledgements

The author would like to express her sincerest gratitude to **Prof. Dr. Almoataz Yousef Abd Elaziz, Prof. Dr. Hany Mohamed Hasanien and Dr. Mahmoud Soliman** for the great support, excellent supervision and encouragement shown during the period of this study.

Special thanks to the Electrical Power and Machines Department, Faculty of Engineering; Ain shams University, for the great support and encouragement.

ABSTRACT

As a result of the world consciousness about environmental issues and to decrease the nuclear power demand, wind power becomes a competitive energy source that rivals the conventional power sources. However, the interconnection of the variable speed wind generator system (VSWG) with the network suffers from a lot of technical challenges, in terms of power quality and availability.

The variable-speed wind turbine (VSWT) generator systems have various merits that make them more prevalent in wind energy production. Some of these features are its capability to control, lower quantities of ripples, and higher power density compared to the fixed. There are various types of these machines used in the VSWT, Such as the permanent-magnet synchronous generator (PMSG). Which is featured by gearless construction, higher efficiency, small size, high reliability, and self-excitation.

The interconnection of the VSWT-PMSG and the electrical network is carried out by utilizing the fully rated frequency converter (FC). The FC composes of generator- and grid- side converters with an intermediate DC link capacitor (C_{DC}). The generator-side converter (GSC) has the responsibility to extract the maximum power from the wind to the grid at a unity power factor. The grid-side inverter (GSI) is applied to control the DC-link voltage and the terminal voltage as well, at a desired value adjusted by the operator. The C_{DC} is protected by an over-voltage protection scheme (OVPS). The cascaded control scheme is utilized to control both GSI and the GSC. This control strategy can utilize various types of controllers such as proportional-integral-derivative (PID), proportional-integral (PI), and fuzzy

logic controller (FLC). The PD and PID are not more attractive to be used in the industry due to the demerits of derivative control action, where it amplifies the input frequency of any harmonics to the system, and to avoid this problem; a designed filter should be used. Therefore, PI is commonly used. The main feature of the PI controllers is their wide stable responses. However, these controllers have a high sensitivity to variation of parameters and system non-linearity.

This thesis presents different control strategies to enhance the transient stability of a grid-connected wind generator system. A grasshopper optimization algorithm (GOA)-based PI controller, a hybrid particle swarm with a gravitational search algorithm (PSO-GSA)-based PI controller, and a GOA-based fuzzy logic controller (FLC). For achieving practical responses, real wind speed data extracted from the Zafarana wind farm in Egypt utilized in this study. The viability of the proposed control techniques compared with that achieved utilizing Newton-Raphson (NR) and genetic algorithm based-PI controller, considering severe grid disturbances are checked. The feasibility of the proposed control approaches is validated by the simulation study, which accomplished by using the MATLAB/Simulink environment.

Keywords: Renewable energy, Permanent-magnet synchronous generator, Variable-speed wind turbine, Grasshopper optimization algorithm, hybrid particle swarm with gravitational search algorithm, Fuzzy logic controller, Frequency converter.

TABLE OF CONTENT

VII

IX

Abstract

Contents

	List Of Figures	XIII
	List Of Tables	XVI
	List Of Abbreviations	XVII
	List Of Symbols	XIX
	Chapter 1	
	INTRODUCTION	
1.1	General	1
1.2	Objectives Of The Work	3
1.3	Thesis Layout	4
	Chapter 2	
	WIND ENERGY CONVERSION SYSTEM	
2.1	Main Parts of Wind Energy Conversion System	6
2.2	Wind Turbine Technology	6
2.2.1	 Horizontal-Axis Wind Turbine 	7
2.2.1.1	 Advantages 	7
2.2.1.2	 Disadvantages 	8
		IX

2.2.2	 Vertical-Axis Wind Turbine 	9
2.2.2.1	 Advantages of the 	9
2.2.2.2	 Disadvantages of the 	10
2.3	Drive-Trains	10
2.4	Electric Generator System	11
2.4.1	• Fixed-Speed Generators	11
2.4.1.1	 Squirrel-Cage Induction Generator and a Three-Stage Gearbox 	11
2.4.2	 Limited Variable-Speed Generators 	12
2.4.2.1	 Wound Rotor Induction Generator and a Three-Stage Gearbox 	12
2.4.3	 Variable Speed Concept with Gearbox 	13
2.4.3.1	 Dobly Fed Induction Generator System with a Three-Stage Gearbox 	14
2.4.3.2	 Permeant-magnet synchronous generator 	15
2.5	Power Converter	17
2.5.1	 Voltage Source Rectifier 	17
2.5.2	• Z-Source Inverter Model	18
2.5.3	 Matrix Converter Model 	19
2.5.4	Back-To-Back Converter Model	20

Chapter 3

NEW OPTIMIZATION METHODSBASED-PI CONTROLLER TO ENHANCE THE PERFORMANCE OF THE VSWT-PMSG

3.1	General	22
3.2	Model System	23
3.3	Wind Turbine Model	25
3.4	Permeant Magnet Synchronous Generator Model	27
3.5	Control of Frequency Converter	28
3.5.1	• Generator-Side Converter	28
3.5.2	• Grid-Side Inverter	29
3.5.3	 DC-Link Over Voltage Protection Scheme 	30
3.6	Control Strategies	31
3.6.1	 Problem Formulation 	31
3.6.2	• Grasshopper optimization-Based PI	31
3.6.2.1	 Grasshopper optimization Model 	31
3.6.2.2	 Newton-RaphsonModel 	35
3.6.2.3	 Simulation Results 	36
3.6.3	 Hybrid Particle Swarm-Gravitational search algorithm-Based PI 	45
3.6.3.1	 Model 	45
3.6.3.2	 Genetic Model 	49

3.6.3.3	• Simulation Results	49
	Chapter 4	
	IMPROVING TRANSIENT STABILITY OF WIND GENERATORS	
4.1	Introduction	57
4.2	Control of Frequency Controller	60
4.2.1	 Generator-Side Converter 	60
4.2.2	• Grid-Side Inverter	61
4.3	Fuzzy Logic Controller	62
4.4	Simulation Results	65
	Chapter 5	
	Conclusion And Future Works	
5.1	Conclusions.	76
5.2	Future Work	77
	PUBLICATIONS	78
	REFERENCES	79