

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Introduction

The coronal tooth structure can be compromised by multifactorial causative agents; defective restorations, large carious lesions, severe attrition, erosion or even wear and occlusal trauma. In these cases, endodontic treatment proposes the ultimate solution to remove the infected tissue and microorganisms to control the pain and radicular inflammatory response in the root canal system.

For long time dentists restored endodontically treated teeth by placing post, core with subsequent placement of full coverage crowns. However, they have some disadvantages, such as fracture of roots, corrosion and even loss of post retention. It requires removal of a large amount of root dentin for preparation for post placement particularly for cast post and cores. An alternative solution was proposed to use a glass fiber post system.

Glass fiber posts have the advantages of having same modulus of elasticity of dentin, using an all adhesive system and esthetically appealing in areas of high esthetic demands which all contributes to reinforcement of the remaining tooth structure, enhancing the esthetic outcome and reduce the mode of failure in comparison to regular metal posts.

Endocrowns are ceramic restorations that are mechanically anchored and adhesively strongly bonded to hard dental tissues using resin cements.

These restorations are fitted into the internal part of the pulp cavity chamber and margins. The advantages of endocrowns are limiting the

"Fracture Resistance of Endodontically Treated Maxillary Incisors Restored by Two Designed Endocrowns Using Two Materials"

"Thesis submitted to the Department of Fixed Prosthodontics,
Faculty of Dentistry, Ain Shams University, in partial
fulfillment of the requirements of the Master Degree of science in
Fixed Prosthodontics"

By

Muhammad Mahmoud Talaat Abdul Salaam Saadoun
B.D.S (2011) Faculty of Dentistry, Ain Shams University

Faculty of Dentistry
Ain Shams University
2020

Under Supervisors

Prof. Dr. Amina Muhammad Hamdy

Professor of Fixed Prosthodontics Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

Dr. Ahmad Khaled Abo El-Fadl

Associate Professor of Fixed Prosthodontics Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

> Faculty of Dentistry Ain Shams University 2020

Acknowledgement

I would like to express my gratitude to **Dr. Amina Hamdy**, Professor of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University for her kind guidance, meticulous advice and supervision throughout this project.

I would like to express special thanks and deepest gratitude to **Dr. Ahmad Khaled Abo-Elfadl,** Associate Professor of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for his valuable time, sincerity and unlimited help throughout my academic and clinical work.

To the amazing staff members of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for all the knowledge I attained from them throughout my studying years.

Dedication

To

Mp Sather, may your soul rest in peace. Sknow you would have been so proud and you would have encouraged me throughout my study every step of the way.

My Siblings you helped through this entire process every step of the way., You are my life and the reason of my happiness. Love you deeply and unconditionally.

Alpa, Words cannot describe how \circ am so privileged to have you as a friend. \circ am so grateful for your existence in my life. Truly a friend in need is a friend indeed...

Shehab, S am blessed to have you as friend and a brother. You gave me strength, perseverance and tenacity in hard times. Chank you...

Reter, my soulmate and best friend. You are a constant reminder of kindness, purity and goodness in this world. extstyle extstyle

Rist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	v
Introduction	1
Review of Literature	3
I. Challenges of Restoring Endodontically Treated Teeth	3
II. Management of Endodontically Treated Teeth	5
Conventional methods	5
Recent Methods	11
III. Endocrowns:	17
Definition	18
Preparation Designs	18
Materials for Endocrowns	21
IV. Fracture resistance and failure of endodontically treated	l teeth 29
Statement of the Problem	34
Aim of the Study	35
Materials and Methods	36
Results	66
Discussion	75
Summary	84
Conclusion	86
Recommendations	87
References	88
Arabic Summary	

Rist of Tables

Table No.	Title	Page No.
Table (1):	Summary of materials used, manufacturer, descand composition	-
Table (2):	Showing different microstructure composition E.max according to degree of crystallization	
Table (3):	Showing the standard composition of IPS E.max	x CAD 38
Table (4):	Showing the ceramic composition of Vita I CAD blocks.	
Table (5):	Showing the polymer composition of Vita l CAD blocks.	
Table (6):	Comparing the mechanical properties between E.max CAD and Vita Enamic CAD blocks	
Table (7):	Factorial Design	44
Table (8):	Standardized design parameters	54
Table (9):	Descriptive statistics of fracture resistance (N)	66
Table (10):	Effect of different variables and their interactifracture resistance (N)	
Table (11):	Mean ± standard deviation (SD) of fracture res (N) of different restorations	
Table (12):	Mean ± standard deviation (SD) of fracture res (N) of different ceramic materials	
Table (13):	Mean ± standard deviation (SD) of fracture res (N) of different restorations (B).	
Table (14):	Mean ± standard deviation (SD) of fracture res (N) of different endocrown preparation	
Table (15):	Mean ± standard deviation (SD) of fracture res (N) for samples made with different restoration ceramic materials	ons and

List of Sigures

Fig. No.	Title	Page No.
Figure (1): IPS e.max	CAD blocks	37
Figure (2): Vita Enam	ic CAD blocks	38
Figure (3): Bifix QM	resin cement, Futura Bond and Ce	ramic Primer 40
Figure (4): Ceramic et	ch 9.5%	40
Figure (5): Filtek Z250	0 XT Composite Resin	41
Figure (6): Adseal, Ro	oot canal resin sealer	41
Figure (7): Group C		43
Figure (8): Group M		43
Figure (9): Group F		43
Figure (10): A.M.D de	ental surveyor 102	46
Figure (11): Computed	d Numerical Control Machine (CN	NC) 48
Figure (12): CNC con	ventional endocrown preparation.	49
Figure (13): Group C	(Facial View)	49
Figure (14): Group C	(Palatal View)	49
Figure (15): Group M	(Palatal View)	50
Figure (16): Group F ((Facial View)	50
Figure (17): Group F ((Proximal View)	50
Figure (18): MC XL n	nilling unit	51
_	l abutment of proposed modified e	
	outment of proposed classical full	_
Figure (21): Showing	Omnicam scanner	53
Figure (22): Proposed	full coverage design – Group F	55
Figure (23): Proposed	full coverage design – Group F	55

Figure (24):	$Proposed\ modified\ endocrown\ design-Group\ M$	56
Figure (25):	Conventional endocrown design – Group C	56
Figure (26):	Wet Milling of Vita Enamic Block Displaying Convention Endocrown.	
Figure (27):	Screen Displaying Remaining Milling Time	58
Figure (28):	Showing P3010 Ivoclar Vivadent Furnace	59
Figure (29):	Glazed Ceramic Restorations.	59
Figure (30):	Displaying the polishing kit of Vita Enamic Restorations	60
Figure (31):	Etching of Vita Enamic - Full Coverage Crown	60
Figure (32):	Etching of e.max - Conventional Endocrown	60
Figure (33):	$After\ applying\ Silane\ Modified\ Endocrown-e.max$	61
Figure (34):	Vita Enamic modified endocrown	62
Figure (35):	e.max full coverage crown	62
Figure (36):	Vita Enamic – Labial view. Conventional Endocrown Design	62
Figure (37):	Vita Enamic – Palatal View Conventional Endocrown Design	62
Figure (38):	e.max Polishing ket.	63
Figure (39):	e.max Polishing Ket.	63
Figure (40):	Universal testing Machine	64
Figure (41):	Box plot showing fracture resistance (N) for different grou	-
	Bar chart showing average fracture resistance (N) of different restorations.	68
Figure (43):	Bar chart showing average fracture resistance (N) of different ceramic materials.	69
Figure (44):	Bar chart showing average fracture resistance (N) of different restorations (B)	70
Figure (45):	Bar chart showing average fracture resistance (N) of different endocrown preparation	71

Figure (46):	Bar chart showing average fracture resistance (N) for samples made with different restorations and ceramic materials (A)	74
Figure (47):	Bar chart showing average fracture resistance (N samples made with different restorations and ceramic materials (B)	74

List of Abbreviations

Abb.	Full term
EDTA	Ethylene Diamine Tetra acetic acid
FRC	Fiber reinforced composite
HTZ	High translucent zirconia
LDS	Lithium disilicate
NaOCl	Sodium Hypochlorite
PICN	Polymer infiltrated ceramic network
PICN	Polymer-infiltrated ceramic networks
RNC	Resin nanoceramics
ZRLS	Zirconium-reinforced lithium silicate