

# Association of STAT6 Gene Variants with Food Allergy

#### Thesis

Submitted for Partial Fulfillment of M. Sc Degree in **Pediatrics** 

By

Mostafa Khaled Alamin M.B.B.Ch (2014)

Under Supervision of

#### Prof. Zeinab Awad El-Sayed

Professor of Pediatrics Faculty of Medicine, Ain Shams University

#### Dr. Amira Fouad Elhattab

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020



سورة البقرة الآية: ٣٢

#### Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Zeinab Awad El-Sayed**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Amira Found Elhattab**, Lecturer of Pediatrics, Faculty
of Medicine, Ain Shams University, for her sincere
efforts and fruitful encouragement.

I would like to express my hearty thanks to my family for their support till this work was completed.

Mostafa Khaled Alamin

## Tist of Contents

| Title                 | Page No. |
|-----------------------|----------|
| List of Tables        | 5        |
| List of Figures       | 9        |
| List of Abbreviations | 10       |
| Introduction          | 1 -      |
| Aim of the Work       | 15       |
| Review of Literature  |          |
| ■ Food Allergy        | 16       |
| • STAT6               | 48       |
| Patients and Methods  | 55       |
| Results               | 67       |
| Discussion            | 89       |
| Conclusion            | 103      |
| Recommendations       | 104      |
| Summary               | 105      |
| References            | 109      |
| Arabic Summary        |          |

### Tist of Tables

| Table No. | Title                                                                                                                       | Page             | No. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|------------------|-----|
| Table 1:  | Clinical manifestation of hypersensitivity based on the pathoge mechanism of the disease                                    | enetic           | 31  |
| Table 2:  | Size of SPT wheal with high likelihor FA and not only sensitization                                                         |                  | 35  |
| Table 3:  | Serum food specific IgE decision points                                                                                     |                  | 36  |
| Table 4:  | Indications for OFC                                                                                                         |                  | 38  |
| Table 5:  | Fluorescence signal correlations for rs324015 and rs1059513                                                                 |                  | 64  |
| Table 6:  | Variation of demographic data in allergic subjects (n=50) versus all subjects without FA (n=50) and consubjects (n=50)      | lergic<br>ontrol | 69  |
| Table 7:  | Variation of demographic data in allergic subjects (n=50) versus all subjects without FA (n=50) and co subjects (n=50) cont | lergic<br>ontrol | 69  |
| Table 8:  | Clinical manifestations of allergy in all patients with (n=50) versus withou (n=50)                                         | t FA             | 70  |
| Table 9:  | Eosinophil count and total IgE allergic patients with (n=50) versus wi FA (n=50)                                            | thout            | 71  |
| Table 10: | Disease parameters in allergic part with (n=50) versus without FA (n=50).                                                   |                  | 71  |
| Table 11: | SPT results to common food allerge food allergic subjects (n=50)                                                            |                  | 72  |

### Tist of Tables cont...

| Table No. | Title                                                                                                            | Page No.        |
|-----------|------------------------------------------------------------------------------------------------------------------|-----------------|
| Table 12: | Number of FA patients with positive S multiple food allergens                                                    |                 |
| Table 13: | Number of CMA patients with positive to other food allergens                                                     |                 |
| Table 14: | Genotype occurrences in rs324015<br>rs1059513 STAT6 gene polymorph<br>among all subjects (n=150)                 | hisms           |
| Table 15: | rs324015 and rs1059513 SNP genotypall allergic subjects (n=100) versus cosubjects (n=50)                         | ontrol          |
| Table 16: | rs324015 and rs1059513 SNP a frequencies in all allergic patients (n versus controls (n=50)                      | =100)           |
| Table 17: | rs324015 and rs1059513 SNP genotype<br>food allergic subjects (n=50) versus consubjects (n=50)                   | ontrol          |
| Table 18: | rs324015 and rs1059513 SNP a frequencies in food allergic subjects (resus control subjects (n=50)                | n=50)           |
| Table 19: | rs324015 and rs1059513 SNP genotypallergic subjects without FA (n=50) v control subjects (n=50)                  | ersus           |
| Table 20: | rs324015 and rs1059513 SNP a<br>frequencies in allergic subjects withou<br>(n=50) versus control subjects (n=50) | ıt FA           |
| Table 21: | rs324015 and rs1059513 SNP genotypallergic patients with (n=50) versus with (n=50).                              | pes in<br>thout |

### Tist of Tables cont...

| Table No. | Title                                                                                                            | Page           | No. |
|-----------|------------------------------------------------------------------------------------------------------------------|----------------|-----|
| Table 22: | rs324015 and rs1059513 SNP<br>frequencies in food allergic (n=50) allergic subjects without FA (n=50)            | versus         | 80  |
| Table 23: | The association of family history of with different rs324015 SNP gen-<br>among all patients and controls         | otypes         | 81  |
| Table 24: | The relation of family history of aters1059513 SNP genotypes amon subjects.                                      | g all          | 81  |
| Table 25: | Relation between physician diagallergic diseases and rs324015 genotypes among all allergic pa (n=100)            | SNP<br>atients | 82  |
| Table 26: | Relation between physician diag<br>allergic diseases and rs1059513<br>genotypes among all allergic pa<br>(n=100) | SNP<br>atients | 83  |
| Table 27: | Relation between parameters of d<br>severity and rs324015 SNP gen-<br>among all allergic subjects (n=100)        | otypes         | 84  |
| Table 28: | Relation between parameters of d<br>severity and rs1059513 SNP gen-<br>among all allergic subjects (n=100)       | otypes         | 84  |
| Table 29: | Relation between anaphylaxis rs1059513 SNP genotypes amon allergic subjects (n=100)                              | g all          | 85  |
| Table 30: | Relation between demographic data rs324015 SNP genotypes among subjects.                                         | g FA           | 86  |

### Tist of Tables cont...

| Table No. | Title                                                                                           | Page No.  |
|-----------|-------------------------------------------------------------------------------------------------|-----------|
| Table 31: | Relation between physician diallergic diseases and different a SNP genotypes among FA subjects. | cs324015  |
| Table 32: | Relation between parameters of severity and rs324015 SNP gramong FA subjects.                   | enotypes  |
| Table 33: | Relation between eosinophil courtotal IgE levels and rs32401 genotypes among FA subjects        | 5 SNP     |
| Table 34: | Relation between food allergen ty rs324015 SNP genotypes amo subjects                           | ong FA    |
| Table 35: | Relation between rs324015 SNP go and single CMA versus CMA and of allergies.                    | ther food |

# List of Figures

| Fig. No.   | Title Pag                                                                     | ge No.                |
|------------|-------------------------------------------------------------------------------|-----------------------|
| Figure 1:  | Mechanism of FA                                                               |                       |
| Figure 2:  | Integration of the vitamin D deficient hygiene, and dual allergen expositions | • .                   |
|            | hypotheses                                                                    |                       |
| Figure 3:  | Age at diagnosis of common aller                                              |                       |
|            | conditions                                                                    |                       |
| Figure 4:  | Algorithm for the diagnosis of FA                                             | 33                    |
| Figure 5:  | Timing of food introduction into infant of                                    | $\operatorname{liet}$ |
|            | and corresponding level of evidence                                           | 46                    |
| Figure 6:  | Schematic diagram of the IL-4/IL-13/STA                                       | ΛT6                   |
|            | signaling pathways                                                            | 49                    |
| Figure 7:  | Effector functions mediated by STAT6                                          | in                    |
|            | multiple cell types                                                           |                       |
| Figure 8:  | rs1059513 genotypic frequencies acr                                           | oss                   |
|            | populations                                                                   |                       |
| Figure 9:  | rs324015 genotypic frequencies acr                                            | oss                   |
| J          | populations                                                                   |                       |
| Figure 10: | Overview of the DNA purification process.                                     |                       |
| Figure 11: |                                                                               |                       |
| Ö          | reporter (FAM or VIC) dye, Q=quench                                           |                       |
|            | (TAMRA) dye                                                                   |                       |
| Figure 12: | Variable frequency of different manifestation                                 |                       |
| 8          | of FA                                                                         |                       |

### Tist of Abbreviations

| Abb.          | Full term                                                |
|---------------|----------------------------------------------------------|
| ABC           | Activated-R-cell                                         |
| AD            |                                                          |
| <i>AF</i>     | -                                                        |
|               | Atopy patch testing                                      |
| AR            |                                                          |
| <i>BA</i>     |                                                          |
| <i>BAT</i>    | Basophil activation testing                              |
| <i>BF</i>     |                                                          |
| <i>CMA</i>    | Cow's milk allergy                                       |
|               | Cow-milk formula                                         |
| <i>CRD</i>    | Component-resolved diagnostics                           |
| <i>DBPCFC</i> | $ Double\text{-}blind\ place bo\text{-}controlled\ food$ |
|               | challenge                                                |
| DLBCLs        | Diffuse large B-cell lymphomas                           |
| EEACI         | European Academy of Allergy and Clinical                 |
|               | Immunology                                               |
| <i>EGAC</i>   | Egyptian Accreditation Council                           |
| EoE           | $ Eosinophilic\ esophagitis$                             |
|               | $ Epicutaneous\ immunotherapy$                           |
| <i>FA</i>     |                                                          |
|               | Fluorescein amidites                                     |
|               | Fc Fragment Of IgE Receptor Ia                           |
|               | US food and drug administration                          |
| <i>FH</i>     | · · · · · · · · · · · · · · · · · · ·                    |
|               | Fillagrin loss of function                               |
|               | Germinal center B-cell                                   |
| <i>GIT</i>    |                                                          |
|               | Genome wide association                                  |
|               | Human leukocyte antigen                                  |
| <i>Ig</i>     | _                                                        |
| _             | Immunoglobulin E                                         |
| <i>IL</i>     |                                                          |
| <i>IQR</i>    | Interquartile range                                      |

## Tist of Abbreviations cont...

| Abb.          | Full term                              |
|---------------|----------------------------------------|
| III           | 7 17                                   |
|               | Immunotherapy                          |
|               | Janus kinases                          |
|               | Learning Early About Peanut Allergy    |
|               | Minor groove binder                    |
|               | Nonsignificant                         |
|               | Oral food challenge                    |
| <i>OIT</i>    | Oral immunotherapy                     |
| <i>ORMDL3</i> | Orosomucoid-like $3$                   |
| <i>PA</i>     | Peanut allergy                         |
| <i>PAI</i>    | Pediatric Allergy and Immunology Unit  |
| <i>PCR</i>    | Polymerase chain reaction              |
| <i>pSTAT6</i> | Phospho-STAT6                          |
| S             | Significant                            |
|               | Standard deviation                     |
| serpin        | Serine protease inhibitor              |
| _             | Serine protease inhibitors B           |
|               | Single nucleotide polymorphism         |
|               | Statistical package for Social Science |
|               | Skin prick test                        |
|               | Tetramethyl-6-Carboxyrhodamine         |
|               | Type-2 T helper cells                  |
|               | Utrecht Center for Food Allergy        |
|               | United Kingdom                         |
| VIC           |                                        |

#### Introduction

ood allergy (FA) is a global health concern as it affects as many as 10% of children and has significant effects on family economics and health-related quality of life. It causes anaphylaxis which carries the risk of death. Several factors play important roles as risk factors for FA including genetics, host's intestinal flora, the timing, dosage, and frequency of exposure to various dietary allergens, as well as the allergenicity of various food proteins (*Ferreira et al., 2007*). A family history of atopy, especially of FA, is used to identify individuals at risk of FA (*Hossny et al., 2011*).

Genetic predispositions may result in dysregulation of the immune system and lead to FA when exposed to environmental factors (*Lack*, 2008). Reproducible associations with FA were found for a limited number of genes such as Fillagrin loss of function (FLG-LOF) mutations (*Venkataraman et al.*, 2014), variants of HLA genes (*Hong et al.*, 2015), FCER1A, STAT6, IL13 genes (*Suaini et al.*, 2019) and the SERPINB gene cluster on chromosome 18 (*Max Delbrück Center for Molecular Medicine in the Helmholtz Association*, 2017).

The transcription factor STAT6 plays a role in activating cytokine signaling both in the immune cells and in target tissue cells including airway epithelium, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as

asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE) (*Krishnamurthy et al.*, 2016). Single nucleotide polymorphisms (SNPs) in the genes encoding IL-4, IL-13 and STAT6 are linked to FA and asthma (*Tamura et al.*, 2003).

Two SNPs in STAT6 gene were previously described to be associated with food allergy; rs324015 and rs1059513. As regards r324015, it was found to be associated with nut and cow's milk allergy (*Amoli et al., 2002; van Ginkel et al., 2018*), mild atopic asthma (*Gao et al., 2000*), a higher age of tolerance to cow's milk (*Yavuz et al., 2013*), local eosinophilia (*Negoro et al., 2006*) and when combined with a repeat homozygosity in STAT6, was significantly associated with atopic dermatitis, bronchial asthma, and food-related anaphylaxis (*Tamura et al., 2003*).

With respect to rs1059513, it was found to be associated with nut allergy (van Ginkel et al., 2018), total IgE dysregulation (Duetsch et al., 2002; Schedel et al., 2004; Sharma et al., 2014; Granada et al., 2012) and increased concentrations of GM-CSF and TNF-α which altered immune responses at birth and caused the development of allergic diseases during childhood (Casaca et al., 2014). Moreover, an interaction between in IL13 rs20541 and STAT6 rs1059513 SNPs was found to cause a 1.52-fold increased risk of eczema (Ziyab et al., 2013).



The genetic constitution relevant to the development of FA is largely unknown and differs with differing ethnicities. There are as yet no reports on the nature and role of genetic polymorphisms contributing to FA among Egyptians.

#### AIM OF THE WORK

This work aimed to investigate the association of two selected SNPs in the STAT6 gene, rs324015, and rs1059513, with IgE mediated food allergy (FA) for identifying some of the genes incriminated in FA in Egyptian children. Learning about the roots of the problem will help design therapeutic approaches for FA.