

Randomized Prospective Study Comparing Conventional Versus Hypofractionated Adjuvant Radiotherapy in Node Positive Breast Cancer

Thesis

Submitted for Partial Fulfillment of MD Degree in Clinical Oncology and Nuclear Medicine

Presented by

Mai Atef Abd EL Mageed Ali EL Deen

M.B,B.Ch,M.Sc.

Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Eman El Sheikh

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Prof. Mahmoud Ellithy

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Prof. Khaled Naguib

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Prof. Amr Shafik Tawfik

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Department of Clinical Oncology and Nuclear Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Eman El Sheikh**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine – Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Mahmoud Ellithy**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Khaled Maguib**, Assistant Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine – Ain Shams University, for his great help, active participation and guidance.

I am also grateful to **Prof. Amr Shafik Tawfik,** Assistant Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine – Ain Shams University, for his great efforts and time he had devoted in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mai Atef

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vi
Introduction	1
Aim of the Work	11
Review of Literature	
Radiobiological Basics for Hypofractionation	12
🤝 Role of Radiotherapy in Breast Cancer Manager	ment 29
Prognostic and Predictive Factors Affecting Ra- Decision	
Hypofractionated Adjuvant Radiotherapy Cancer	
Radiotherapy Side Effects; Difference Conventional and Hypo Fractionation	
Radiation Therapy Technique	64
Patients and Methods	73
Results	84
Discussion	96
Summary	103
Conclusion	108
References	110
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	NCCN Guidelines for selection of pat Post mastectomy and Surgical Staging Radiation Therapy among with Operable Invasive Breast Cance	Axillary Patients
Table (2):	NCCN Guidelines for locoregical to for Post lumpectomy with Surgical Staging Radiation Therapy among with Operable Invasive Breast Cancer	Axillary Patients
Table (3):	Recommendations for hormone positive (HRp), human epidermal factor receptor 2-negative (HER2 cancer	growth) breast
Table (4):	Recommendations for human egrowth factor receptor 2-positive breast cancer	(HER2p)
Table (5):	Recommendations for triple-negative cancer	
Table (6):	Summary of the patient characterist studies comparing conventional hypofractionated radiotherapy in nearly breast cancer	versus nanaging
Table (7):	Different patterns of radiation derma	titis 57
Table (8):	Acute radiation dermatitis grading	58
Table (9):	Anatomical boundaries of breast as wall contouring	
Table (10):	Anatomical boundaries of regions contours	
Table (11):	Harvard/NSABP/RTOG Breast Grading Scale	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (12):	Patients' demographic as	
Table (13):	Continue patients' demographicharacteristics	
Table (14):	Multivariate analysis: occ lymphoedema (variables: arm excised lymph nodes and surger	, number of

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Ten main Cancer Types for th New Cancer Cases and Deat United States, 2018	ths by Sex,
Figure (2):	Survival curves with the processoresponse to radiotherapy	
Figure (3):	Highly hypothetical illustration extrapolate the experimental data and late responding tissues in ratio principles that can be applied radiotherapy	ata for early ats and mice ed in clinical
Figure (4):	Isoeffect curves in which the required for a particular effect tissues in laboratory animals is function of dose per fraction	t in various plotted as a
Figure (5):	The dose-response relationshi responding tissues is more curve early responding tissues	ved than for
Figure (6):	Accelerated repopulation. Growth rat rhabdomyosarcoma presshrinkage, growth delay, and recurrence following treatment values ingle dose of x-rays	enting the subsequent with a 20 Gy
Figure (7):	Tumor control probability (TCP) volume (receiving a homogenous range of fraction numbers (1to50) tumor α/β . All curves are for the tissue complication probability 'isotoxic', here for rectal bleeding which $\alpha/\beta = 3$ Gy has been used	dose) over a for different same normal (NTCP), i.e. ag (4.3%) for
Figure (8):	Clinical anatomy of the breast	64

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (9):	Anatomical lymphatic's of the axilla	66
Figure (10):	Surgical lymphatics of the axilla (mo	odified) 67
Figure (11):	Breast cancer patient immobilization	n device 69
Figure (12):	Contouring volumes	70
Figure (13):	The final result of delineation volume reconstruction	
Figure (14):	Dose- volume histogram of left side cancer treated with external radiotherapy.	l beam
Figure (15):	Large bore CT scan with patient im using breast tilt boards with the slo chest wall parallel to the table, with a	ope of the
Figure (16):	Left breast cancer delineation, who CTV: red, boost CTV: orange, supra clavicular CTV: dark red, cont breast: yellow, ipsilateral lung: blu greened blue	& infra- tralateral ne, heart:
Figure (17):	Right and left tangential fields' arrafor left chest wall in a left sided breawoman underwent MRM	st cancer
Figure (18):	Matching the tangential fields supraclavicular fields with half be tequique.	am block
Figure (19):	95% color wash covering of the who CTV & internal mammary lymph left breast cancer patient.	nodes in

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (20):	DVH showing the V20 of the ipsilar (blue) less than 30 in a left brea patient.	st cancer
Figure (21):	Pictures for cosmetic evaluation of patients in conventional arm group	
Figure (22):	Kaplan Mayer curve for DFS	88
Figure (23):	Patients' rating: Good or excellent outcome after radiotherapy	
Figure (24):	Doctors' rating: Good or excellent outcome after radiotherapy	
Figure (25):	Prevalence of arm lymphoedema arms.	
Figure (26):	Dry desquamation prevalence	94
Figure (27):	Skin darkness prevalence	95

List of Abbreviations

Abb.	Full term
<i>AMP</i>	Adenosine monophosphate
	American Society for Radiation Oncology
	Breast-Conserving Surgery
	. Common Terminology Criteria for Adverse Events
D max	
	Disease Free Survival
	Dose Volume Histogram
	Extra- Capsular Extension
	European Organization for research and Treatment
EQD2	Equivalent dose in 2 Gy fractions
ER	Estrogen Receptor
<i>ERp</i>	Estrogen Receptor Positive
GEC-ESTRO	. Groupe Europeen de Curietherapie-European Society for Theraputic Radiology and Oncology
<i>IDC</i>	Invasive Ductal Carcinoma
<i>ILC</i>	Invasive Lobular Carcinoma
<i>IMC</i>	Invasive Medullary Carcinoma
L.Ns	Lymph Nodes
LVI	Lymphovascular Invasion
<i>MRM</i>	Modified Radical Mastectomy
NCCN	National Comprehensive Cancer Network
NSABP	National surgical Breast and Bowel Project
NTCP	Normal Tissue Complication Probability
OS	Overall survival
<i>PMRT</i>	Postmastectomy Radiation Therapy

List of Abbreviations (Cont...)

Abb.	Full term
PR	.Progesterone Receptor
	.Radiation Induced Brachial Plexopathy
RNI	.Regional Nodal Irradiation
<i>RT</i>	.Radiation Therapy
<i>RTOG</i>	.Radiation Therapy Oncology Group
SCV	.Supraclavicular Area
TCP	.Tumor Control Probability

ABSTRACT

Our study revealed that Hypofractionated adjuvant radiotherapy in node positive breast cancer patients is equivalent to conventional fractionation, in disease free survival, cosmetic outcome and arm lymphoedema, with decreased early skin reactions; the DFS was conventional and hypofractionated arms 32.4&36.2 months in statistical significant difference in respectively, (p:0.6),noexcellent/good cosmetic score; 46.2%&71.4% in patient scoring respectively (p:0.182), 8%&29% in doctor scoring (p:0.32) respectively, the prevalence of arm lymphoedema was 40% & 22.2% respectively (p:0.149), while hypofractionated radiotherapy significantly lower the incidence of dry desquamation 28.1% in comparison to conventional fractionation 52.9% (p:0.04), with border line significant lowering of skin darkness (p:0.054), but insignificantly lower wet desquamation (p:0.601).

These results are consistent with the results of the main randomized trials comparing hypofractionation radiotherapy versus conventional fractionation in breast cancer, proving that they are equally effective as regard the loco-regional control, systemic metastasis, overall survival, excellent/good cosmetic outcome, radiation induced pneumonitis, ischemic heart disease and radiation predisposed rib fraction, with lower costs and better quality of life; making hypofractionation a preferred choice for early breast cancer management.

Keywords: Radiation Induced Brachial Plexopathy - Regional Nodal Irradiation - Tumor Control Probability

Introduction

reast cancer is the most common cancer among US women, accounting for 30% of all newly diagnosed cancer cases and the second most common cause of death after lung cancer. The American cancer society estimated that 266,120 new cases of invasive breast cancer diagnosed among women in 2018, and approximately 41,400 women are expected to die from breast cancer (American Cancer Society, 2018).

Figure (1): Ten main Cancer Types for the Estimated New Cancer Cases and Deaths by Sex, United States, 2018 (Siegel et al., 2018).

In Egypt, according to the population-based cancer registry, the estimated incidence rates of breast cancer among females in Lower, Middle, and Upper Egypt are 53/100000 (33.8%) in 2009-2011, 35.6/100000 (26.8%) in 2009 and 64.5/100000 (38.7%) in 2008, respectively (*Amal et al.*, 2014).

The estimated total number of breast cancer patients in the department of Clinical Oncology & Nuclear medicine, Ain Shams University Hospitals in the period between Jan 2010 to December 2014 was 1906 patients, 1412(74%) of them in the adjuvant setting including 1087 (57%) patients with node positive disease (Gado et al., 2017).

While in the United States it is estimated that 93% of breast cancer cases are diagnosed with localized and regional stage with 31 % representing the node positive cases (Siegel et al., 2018).

Therefore those patients with node positive disease constitute a big load to the radiotherapy department which led us to think to apply a shorter course of radiation which would result in considerable decrease in machine time, working hours and less patients visits so as to perform our task efficiently without compromising either the locoregional control and the overall survival benefit proven for adjuvant radiotherapy or increasing its toxicity leading to impairing the quality of life.

AIM OF THE WORK

he aim of our study is to prospectively compare between node positive breast cancer patients operated with modified radical mastectomy or breast conservative surgery and axillary clearance receiving adjuvant conventional radiotherapy versus hypofractionated radiotherapy for chest wall or whole breast and regional lymphatic areas, in terms of the locoregional control, disease free survival, cosmetic outcome, arm lymphoedema and acute skin reactions. To explore the best options across the continuum of care for patients at Ain Shams University Hospitals.