

EFFECT OF GENE EDITING ON AIZHEIMER'S DISEASE

Thesis

Submitted for Partial Fulfillment of Master Degree in Medical Viochemistry and Molecular Viology

By

Noha Nageh Mohammed Ali

Demonstrator of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Maha Mohammad Sallam

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine, Ain Shams University

Dr. Marwa Ali Abd El-Khalek

Lecturer of Medical Biochemistry and Molecular Biology Faculty of Medicine, Ain Shams University

Dr. Mohamed Mahmoud Fouad

Lecturer of Neurology Faculty of Medicine, Ain Shams University

Medical Biochemistry and Molecular Biology Department Faculty of Medicine - Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Maha Mohammad Sallam**, Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Marwa Ali Abd El- Khalek**, Lecturer of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, for her sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Mohamed Mahmoud Found**, Lecturer of Neurology, Faculty of Medicine, Ain
Shams University, for his great help, outstanding support,
active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Noha Nageh Mohammed Ali

Tist of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	11
List of Figures	13
Introduction	1 -
Aim of the Work	18
Review of Literature	
Alzheimer's Disease	19
APP Gene	35
Gene Editing	39
CRISPER - Cas9	42
Subjects and Methods	53
Results	
Discussion	
Summary	
Conclusions & Recommendations	
References	
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
21q21.3	"Long (q) arm of chromosome 21 at position 21.3
A673T	Alanine is replaced by threonine at position
	673
A673V	Alanine is replaced by valine at position
	673
<i>AA</i>	. Alzheimer's Association
AAVs	Adeno - associated viruses
<i>ACH</i>	Amyloid cascade hypothesis
<i>ACTB</i>	Beta actin
<i>AD</i>	Alzheimer's disease
<i>ADRDA</i>	Alzheimer's Disease and Related Disorders
	Association
<i>AMA</i>	APP matrix approach
APOE	$A polipoprotein\ E$
	Amyloid precursor protein
Αβ	
<i>ATP</i>	Adenosine triphosphate
<i>BACE1</i>	Beta-secretase 1
<i>BM</i>	
<i>bp</i>	
	Chromosomal abnormalities
	Cerebral amyloid angiopathy
	Chimeric antigen receptors
	CRISPR associated protein
	Catalogue number
	Cluster of differentiation
	Complementary DNA
CO_2	
	C-terminal domain phosphatase-like 1
<i>CRISPR</i>	Cluster of regularly interspaced
	palindromic repeats
CRISPRa	CRISPR activation

Abb.	Full term
CRISPRi	CRISPR interference
crRNA	•
	Computerized tomography
C_t	
	Cerebrovascular disease
	4',6-Diamidino-2-phenylindole
dCas9	,
DEPC	Diethyl pyrocarbonate
	Diverse and joining gene
dL	Deciliter
<i>DMSO</i>	Dimethyl sulfoxide
<i>DNA</i>	Deoxyribonucleic acid
<i>Ds</i>	$Double\ strands$
	Double strands DNA breaks
DSM criteria	··· Diagnostic and Statistical Manual of
	Mental Disorders
dT	
<i>DTT</i>	
E. coli	
<i>E+03</i>	
<i>E+05</i>	
E693K	Point, Missense mutation mutation GAA to
F4000	AAA Within codon 693 of APP (Italian type)
E693Q	Point, Missense mutation GAA to CAA
ED 1 - CC	Within codon 693 of APP(Dutch type).
EB buffer	• •
	Ethylenediaminetetraacetic acid
	Fluorescence-activated cell sorting Familial alzheimer's disease
	Familiai aizneimer s aisease Fetal bovine serum
	Fetat bourne serum Food and Drug Administration
	Fooa and Drug Administration Follicular dendritic cells
I'DU	romana aenarma cens

Abb.	Full term
FokI	Flavobacterium okeanokoites 1
1 07/1	endonuclease
G	
<i>GC</i>	
gRNA	
~	Hemoglobin gamma gene
<i>HC</i>	
HCL	-
	Huntington disease
	Homology directed repair
	Human leukocyte antigen
	Homothallic switching endonuclease
	Hypothalamic, pituitary and adrenal axis
	Homologous recombination
Hr	Hour
Hs	Homosapien
<i>Ig</i>	Immunoglobulin
indels	Insertion or deletion mutations
<i>iPS</i>	"Induced pluripotent stem
	International staging system
<i>IWG</i> -2	International Working Group
KC1	Potassium chloride
<i>KEGG</i>	Kyoto Encyclopedia of Genes and Genomes
<i>L</i>	Liter
<i>LB</i>	Lysogeny broth
<i>LDH</i>	Lactate dehydrogenase
<i>MACS</i>	Magnetic cell separation
<i>MCI</i>	Mild cognitive impairment
<i>Mg</i>	Milligram
<i>MGUS</i>	Monoclonal gammopathy of undetermined
	significance
<i>mHTT</i>	Mutant huntingtin

Abb.	Full term
7.6	M: ,
Min	
<i>mL</i>	
<i>mM</i>	
<i>MM</i>	- v
mmol	
	.Magnetic resonance imaging
mRNA	
MTS	.3-(4,5-dimethylthiazol-2-yl)-5-(3-
	carboxymethoxyphenyl)-2-(4-sulfophenyl)-
NIECO	2H-tetrazolium salt
	.Neuromicrovascular endothelial cells
	Neurofibrillary tangles
Ng	_
	Non-homologous end joining
	National Institute on Aging
	National institute of health
<i>Nm</i>	
<i>nM</i>	
<i>Nt</i>	
	Orange fluorescence protein
Oligo	
OR	
	Protospacer adjacent motif
<i>PB</i>	- **
	.Phosphate buffer solution
	.Polymerase chain reaction
<i>PE</i>	
<i>PEG</i>	
	.Phenazine ethosulfate
	A positron emission tomography
<i>PET-CT</i>	.Positron emission tomography – computed
	tomography

Abb.	Full term
pGCS vector.	Plasmid of Genomic Cleavage Selection kit
-	Polymorphonuclear leukocytes
	Picomole per microliter
	Presenilin proteins 1
	Presenilin proteins 2
	Presenilin hypothesis
	Quantitative polymerase chain reaction
_	Ribonucleic acid
<i>RPMI</i>	Roswell Park Memorial Institute
<i>RQ</i>	Relative quantification
<i>RR</i>	Relapsed/refractory
<i>RT</i>	Reverse transcription
<i>S</i>	
S.O.C	Super Optimal broth with Catabolite repression
SaCas9	Staphylococcus aureus Cas9
	Sporadic alzheimer's disease
	Single guide RNA/ synthetic guide RNA
	Streptococcus pyogenes Cas9
_	Statistical Package for the Social Science
	S. pyogenes Cas9
	Single-stranded DNA
	Transcription-activator-like effector
,	nucleases
TALENs	Transcription-activator-like effector
	nucleases
Tau protein	A protein that is an important component of
•	nerve cells
<i>TBI</i>	Traumatic brain injury
	T-cell receptor
	Tris and EDTA buffer
	Trans-activating CRISPR RNA

Abb.	Full term
U/mL	Units per milliliter
	Variable, diverse and joining gene segments
	Volume per volume
	Heavy chain variable, diverse and joining regions of gene segments
<i>W/V</i>	Weight per volume
<i>WT</i>	Wild type
	Zinc finger nucleases
	Delta absorbance
ΔCt	$Delta\ c_t$
ΔΔ Ct	$Delta\ delta\ c_t$
λ5	Lambda5
<i>M</i>	
<i>Mg</i>	
μ mol	

Tist of Tables

Table No	o. Title	Page No.
Table 1:	Four studies reported the prevaled dementia by age and gender	
Table 2:	Prevalence of dementia (% of the total ginterest ascertained with dement education status, prevalence of demersidency (rural or urban)	ia) by ntia by
Table 3:	Degree of dementia (% of the total asce cases): mild, moderate, or severe	
Table 4:	An overview of the different clinic research diagnostic criteria for Alterminology used, from the preclinical the symptomatic stages	D, and through
Table 5:	Thermocycler conditions for crRN tracrRNA annealing:	
Table 6:	Reaction mix for QuaniTect SYBR Gre kit to detect <i>APP</i> mRNA:	
Table 7:	Cycling conditions for APP mRNAs:	86
Table 8:	Cell culture count results for leucocytes cell line	
Table 9:	Cell culture count results for leucocytes cell line (mean,SD,p values).	
Table 10:	Post Hoc analysis of cell count results b	y LSD 95
Table 11:	MTS assay for human leucocytes culture that were isolated from Alzheimer's pecells in which APP gene was edited CRISPR_cas9 technology	atients, d using

Tist of Tables cont...

Table No	o. Title	Page No.
Table 12:	Percent of cell viability with MTS asso post hoc test:	
Table 13:	Expression levels of Hs_ APP gene in leucocytes cultured cells that were from whole blood of Alzheimer's patien the APP was edited using CRISH technology	isolated ts, then PR_cas9

List of Figures

Fig. No.	Title	Page	No.
Figure 1: Figure 2:	Pathology of Alzheimer's disease	gene:	30
	21q21.3, which is the long (q) of chromosome 21 at position 21.3		25
Figure 3:	The amyloid cascade hypothesis		
Figure 3:	Time line for the development of		01
rigure 4.	editing tools		40
Figure 5:	Cas9 in vivo: Bacterial Adaptive Immu		
Figure 6:	Overall structure of streptococcus pyo		10
0			46
Figure 7:	Schematic representations of		
O	mechanisms of crispr cas9 mediated		
	recognition and cleavage		48
	Repair system of double DNA breaks		
	Flow chart of the study design		
	A screen shot from DisGeNET databas		
	A screen shot from DisGeNET databas		55
Figure 12:	Screen shots from Expression		
			56
Figure 13:	A screen shot from ThermoFisher	_	
T2' . 14	editing software		57
Figure 14:	A screen shot from ThermoFisher	_	F0
Figure 15.	editing software The hemocytometer		
	Flow chart of CRISPR work flow		
	Structures of MTS tetrazolium an		03
riguic i	formazan product		78
Figure 18:	The 5 Plex Rotor-Gene Real Time		10
8	Analyzer		89
Figure 19:	A column chart represents compa		
8	analysis between total cell count a		
	unedited, edited leucocytes isolated	from	
	alzheimer's partients and normal	pool	
	human leucocytes		96

Tist of Figures

Fig. No	. Title	Page I	No.
Figure 2	20: A column chart represents comparanalysis between dead cell count a unedited, edited leucocytes isolated alzheimer's partients and normal	mong from pool	
Figure 2	human leucocytes	rative mong from pool	
Figure 2	human leucocytes	rative imong from pool	
Figure 2	human leucocytes	rative MTS cocytes	
Figure 2	24: A column chart represents compa analysis between % of cell viability by assay among unedited and edited leuc isolated from patients with Alzheimer's	rative MTS cocytes	
Figure 2	25: Leucocytes cells by Inverted Microscoj edited cells and B: unedited cells	pe. A:	
Figure 2	26: A column chart represents comparanalysis between unedited ,edited F isolated from Alzheimer's patients normal pool human leucocytes	rative PMNL and	
Figure 2	27: Immunofluorescence detection of an protein in leucocytes	nyloid	

Introduction

Izheimer's disease (AD) is referred as one of the most common causes of dementia and frailty. Typically, the symptoms of the disease begin with mild memory difficulties and evolve towards cognitive impairment, dysfunctions in complex daily activities, and several other aspects of cognition (*Mantzavinos & Alexiou*, 2017).

Alzheimer's disease is currently ranked as the sixth leading cause of death in the United States, but recent estimates indicate that the disorder may rank third, just behind heart disease and cancer, as a cause of death for older people (*National Institute on Aging*, 2020).

Current estimates suggest that 44 million people live with dementia worldwide at present. This is predicted to more than triple by 2050 as the population ages, when the annual cost of dementia in the USA alone may exceed US\$600 billion. In coming years, the largest increase in dementia prevalence is expected in low and middle income countries, which show patterns of increasing cardiovascular disease, hypertension and diabetes. AD is the single biggest cause of dementia, accounting for 50%–75%, and is primarily a condition of later life, roughly doubling in prevalence every 5 years after age 65 (*Lane et al.*, 2017).