Reliability of Transient Elastography as a Non-Invasive Technique for Detection of Fibrosis in Budd Chiari syndrome Patients after Endovascular Intervention

Thesis

Submitted for Partial Fulfillment of MD Degree in Tropical Medicine

By

Ahmed Talaat Abd Elsamie Elganzory

Master degree of Tropical medicine Faculty of Medicine - Ain Shams University Under Supervision of

Prof. Mohamed Fawzy Montasser

Former Dean of Faculty of Medicine-Ain Shams University
Professor of Tropical Medicine
Faculty of Medicine - Ain Shams University

Prof. Eman Mahmoud Fathy Barakat

Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Prof. Mohamed Shaker Ghazy

Professor of Radiodiagnosis and Interventional Radiology Faculty of Medicine - Ain Shams University

Prof. Sara Mahmoud Abdelhakam

Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Dr. Hend Elsaid Ebada

Lecturer of Tropical Medicine
Faculty of Medicine - Ain Shams University
Faculty of Medicine
Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else

I would like to express my deepest gratitude and great respect to **Prof. Mohamed Fawzy Montasser**, Professor of Tropical Medicine, under his supervision I had the honor and pleasure to proceed with work. His constant guidance, encouragement and foresight made all the difference.

I would like to express my deepest thanks to **Prof. Eman Mahmoud Fathy Barakat** Professor of Tropical Medicine, for her continuous guidance and encouragement.

My deepest appreciation goes to **Prof. Sara Mahmoud Abdelhakam**, professor of Tropical Medicine, for her valuable suggestions, advice, efforts, creativity and offering me her precious time.

Special thanks go to **Dr. Hend Elsaid Ebada** lecturer of tropical medicine, for her help, co-operation, active participation and guidance.

I would like to express my deepest thanks to **Prof. Mohamed Shaker Ghazy** Professor of Radiodiagnosis and Interventional Radiology for his help, co-operation, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least, my sincere thanks and appreciation to all patients participated in this study.

Ahmed Talaat Elganzory

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	8
Introduction	1
Aim of the Work	6
Review of Literature	
Budd-Chiari Syndrome	7
Tools for Assessment of Liver Fibrosis	45
Patients and Methods	77
Results	86
Discussion	100
Summary	114
Conclusion	119
Recommendations	120
References	121
Arabic Summary	—

List of Tables

Table No.	Title	Page No.
Table (1):	Etiology of BCS	10
Table (2):	The international criteria for behcet disease.	
Table (3):	Approximate prevalence of major risk patients with primary BCS	factors in
Table (4):	Relative risks and comparison of thrombophilic conditions.	
Table (5):	Ranges of CAP scores and the matching stea and amount of fatty change	
Table (6):	Demographic and clinical data of the involve	ed patients 86
Table (7):	Laboratory data of the involved patients	87
Table (8):	Causes of thrombophilia the involved patient	ts 88
Table (9):	Radiological data of the involved patients	89
Table (10):	Type of radiological intervention	90
Table (11):	Radiological investigations for follow patients	
Table (12):	Clinical data before and after intervention	92
Table (13):	Laboratory investigations before and after in	tervention 92
Table (14):	Abdominal US with duplex study before intervention	
Table (15):	Correlation between LSM and HVP intervention.	
Table (16):	Correlation between LSM three more intervention and HVPG immediately post-in	1
Table (17):	Comparison between LSM pre-intervention intervention.	
Table (18):	Comparison between HVPG pre-interventio intervention.	-

List of Tables Cont...

Table No.	Title	Page No	٠.
Table (19):	Relation between LSM before and after and METAVIR Score:		98
Table (20):	Comparison between LSM before intervention with Metavir score	and after	99

List of Figures

Fig. No.	Title	Page No.
Figure (1):	function of ATIII	15
Figure (2):	Causes of Hyperhomocysteinemia	17
Figure (3):	Proposed algorithm for a diamyeloproliferative disease (MPD) with primary BCS	in patients
Figure (4):	Correlation between LSM and HV intervention	
Figure (5):	Correlation between LSM and Hintervention.	
Figure (6):	LSM pre and post intervention	96
Figure (7):	HVPG pre- and post- intervention	97

List of Abbreviations

Abb.	Full term
AAR	The AST/ALT ratio
	Anticardiolipin Antibodies
	Anticardiolipin IgG
-	Anticardiolipin IgM
=	Autoimmune hepatitis
ALB	-
	Alkaline phosphatase
	Alanin amino-transferase
	Agnogenic myeloid metaplasia
	Anti nuclear antibody
	Anti double stranded DNA
Anti-beta-2GPI	Anti-beta 2 glycoprotein
	The age/platelet index
APAs	Antiphospholipid antibodies
APC	Activated protein C
APCR	Activated protein C resistance
APLAS	Antiphospholipid antibody syndrome
APRI	The Aspartate Aminotransferase to Platelet
	Ratio Index
APS	Antiphospholipid syndrome
APTT	Activated partial thromboplastin time
ARFI	Acoustic Radiation Force Impulse
	Elastography
AST	Aspartate amino-transferase
AT III	Antithrombin III
	Budd-Chiari syndrome
BD	
BM	
BMI	Body mass index

List of Abbreviations Cont...

Abb.	Full term
RS	Bonacini's discriminant score
	Blood urea nitrogen
	Controlled attenuation parameter
	Chronic hepatitis B
	Chronic hepatitis C
	Chronic liver disease
	Chronic Myeloid leukemia
	Computed Tomography
	Disseminated intravascular coagulation
	European Association for the Study of the
EAGL	Liver
ECM	extracellular matrix
	endogenous erythroid colony
	European Federation of Societies for
22 8 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ultrasound in Medicine and Biology
ELF	Enhanced liver fibrosis
ESR	Erythrocyte sedimentation rate
	Essential thrombocythemia
	French-American-British
FDA	Federal Drug Administration
	Fluorescent in-situ hybridization
FV	Ţ.
FVa	Activated factor V
	Factor V Leiden mutation
HA	Hyaluronic acid
Hb	Hemoglobin
	Hepatocellular carcinoma
HcT	-
Hetero	Heterozygous

List of Abbreviations Cont...

Abb.	Full term
HH	. Hyperhomocysteinemia
Homo	
	. International normalized ratio
IQR	.interquartile range
IVC	Inferior vena cava
JAK ₂	.Janus tyrosine kinase-2
kPa	. Kilopascal
LAC	. Lupus Anticoagulant
LAP	. Leukocyte alkaline phosphatase
LSM	.liver stiffness measurements
LSN	. liver surface nodularity
MF	. Myelofibrosis
MMP/ TIMP	. metallo-proteinase/ tissue inhibitor of
	metalloproteinase
	. membranous obstruction of the IVC
	. Myeloproliferative disorders
	. Magnetic resonance elastography
	. Magnetic resonance imaging
	. Methylenetetrahydro-folate reductase
	. No abnormality detected
	. Non alcoholic fatty liver disease
	. Non alcoholic steatohepatitis
	Oral Contraceptive Pills
	orthotopic liver transplantation
PC	
	. Polymerase chain reaction
	. Prothrombin gene mutation
	. Procollagen type carboxy terminal peptide
PIIINP	. Procollagen type III amino terminal peptide

List of Abbreviations Cont...

Abb.	Full term
DI M	Dlatalata
PLT	
	Paroxysmal nocturnal hemoglobinuria
PS	Protein S
PT	Prothrombin time
PTFE	Polytetrafluoroethylene
PTT	Partial thromboplastin time
PV	Polycythemia vera
PV	Portal vein
PVT	Portal vein thrombosis
SAAG	Serum-ascites albumin gradient
SD	Standard deviation
SLE	Systemic lupus erythematosus
SWE	Shear Wave Elastography
TB	Total bilirubin
TE	Transient Elastography
TGF- β	tumor growth factor β
TIPS	Transjugular Intrahepatic Portosystemic Shunt
WBCs	White blood cells
WHO	World Health Organization
	β2-glycoproteine I

Introduction

udd–Chiari (BCS) syndrome is a heterogeneous group of characterized by hepatic venous outflow disorders obstruction at the level of the hepatic venules, the large hepatic veins, the inferior vena cava till its junction with the right atrium (Valla, 2008).

BCS is further classified as being primary or secondary, depending on the exact nature of the hepatic venous outflow obstruction. When flow is obstructed by compression or invasion of a lesion outside the hepatic venous outflow track, it is regarded as being secondary BCS; examples include malignant and cystic extrinsic obstruction. If flow is obstructed due to an end luminal aberration, then it is classified as being primary BCS (DeLeve et al., 2009).

Hepatic venous outflow obstruction causes centrilobular congestion and hepatocyte necrosis, which if not treated can lead to hepatic lobulation and cirrhosis. The evolution and severity of these changes vary widely and depend upon the cause, degree and extent of obstruction. Thus, the clinical presentation of BCS has a wide spectrum and ranges from asymptomatic cases to fulminant hepatic failure (Darwish et al., 2009).

The classic triad of abdominal pain, ascites, and hepatomegaly is observed in the vast majority of patients with

Budd-Chiari syndrome, but it is nonspecific. A high index of suspicion is needed to make the diagnosis. Patients with acute onset of obstruction typically present with acute right upper quadrant pain. Abdominal distention can also be a significant symptom, because of ascites. Jaundice is rarely observed (Goel et al., 2015).

The goals of treatment are to prevent extension of thrombosis in the hepatic veins and to alleviate venous obstruction in order to decrease hepatic congestion. Few patients respond to medical treatment (anticoagulation with or without thrombolytic therapy, diuretics). However, most of patients need more invasive procedures to restore the hepatic blood flow including percutaneous angioplasty with or without stenting, transjugular intrahepatic portosystemic shunt (TIPS) or shunt surgery (Pieter and Frederik, 2015).

Liver fibrosis is the single most important factor determining the prognosis in CLD. Detection of earlier stages of liver fibrosis may be helpful in prevention of its progression and may even result in complete regression if appropriate treatment is instituted (Fowell and Iredale, 2006).

Fibrosis is a dynamic process and many studies have suggested that liver fibrosis is actually reversible when the underlying condition is treated. In the early stages of fibrosis, it may be possible to achieve a total curative effect. Therefore,

the early diagnosis and prevention of liver fibrosis is of great importance in the clinical setting (Shin et al., 2016).

with advanced fibrosis **Patients** and cirrhosis generally recommended to undergo clinical surveillance for complications (Lok et al., 2009). Staging of liver fibrosis is therefore important in the management of CLD.

The presence and degree of hepatic fibrosis is crucial in order to make therapeutic decisions and predict clinical outcomes. Currently, the place of liver biopsy as the standard of reference for assessing liver fibrosis has been challenged by the increasing awareness of a number of drawbacks related to its use (invasiveness, sampling error, inter-/intraobserver variability). In parallel with this, noninvasive assessment of liver fibrosis has experienced explosive growth in recent years and a wide spectrum of noninvasive methods ranging from serum assays to imaging techniques have been developed. Some are validated methods, such as the Fibrotest and transient elastography, and are gaining a growing role in routine clinical practice, especially in chronic hepatitis C. Large-scale validation is awaited in the setting of other chronic liver diseases. However, noninvasive tests used to detect significant fibrosis and cirrhosis, the two major clinical endpoints, are not yet at a level of performance suitable for routine diagnostic tests, and there is still no perfect surrogate or method able to completely replace an optimal liver biopsy (Vasilios et al., 2012).

Transient Elastography is a shear wave and ultrasoundbased method, developed by Echosens® (France), initiated from the principles of Hooke's law, which characterizes a material's strain response to external stress (Arinc et al., 2018).

The evaluation of the effectiveness of BCS treatment is generally based on symptoms, which inevitably introduces subjective factors and errors (Valla, 2009). Although Doppler ultrasound has unique advantages as a preferred test for BCS, it has certain technical limitations when used in follow-up examination. Doppler ultrasound may be affected by imaging depth and angle; it has less value in patients with porous and/or membranous lesions of the IVC, and is operator dependent). Moreover, for lesions with less significant hemodynamic changes, Doppler ultrasound lacks sensitivity in evaluating short- and long-term outcomes after therapy (Boozari et al., *2008*).

Though unrelated to the degree of liver fibrosis, LSM is highly sensitive to the changes in hepatic venous pressure. Therefore, efficacy of treatment based on SWE can not only improve the outcome evaluation, but also reduce invasiveness (Wang et al., 2018).

Liver stiffness (LS) measurements made with FibroScan Transient Elastography(TE) can be used as a noninvasive tool to assess hepatic congestion and there by indirectly provide insights into the technical outcome and the benefits of endo-