The Effect of Professional Dental Hygiene Measures on Surface Roughness of Different Monolithic Ceramics

A thesis submitted to the Fixed Prosthodontics Department,

Ain Shams University for the fulfillment of the requirements of the Master's Degree in Fixed Prosthodontics

By

Doaa Maher Mahmoud Moussa

B.D.S (Ain Shams University 2009)

Faculty of Dentistry
Ain Shams University
2019

١

Supervisors

Dr. Marwa Mohamed Wahsh

Associate Professor, Fixed Prosthodontics Department Faculty of Dentistry-Ain Shams University

Dr. Maged Mohamed Zohdy

Associate Professor, Fixed Prosthodontics department Faculty of Dentistry-Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgment

First thanks to **ALLAH** to whom I relate any success.

I would like to express my deepest thanks, gratitude and appreciation to **Dr.Marwa Mohamed Wahsh**, Associate professor, Fixed Prosthodontics department, Faculty of dentistry, Ain Shams University for her meticulous supervision, kind guidance, valuable instructions and generous help.

I am deeply grateful to **Dr. Maged Mohamed Zohdy,**Associate professor Fixed Prosthodontics department, Faculty of dentistry, Ain Shams University for his great help, outstanding support, kind guidance and continuous motivation.

Last but not least, deepest thanks to my dear professors and staff members of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for their support and encouragement.

Dedication

This work is dedicated to My Father's soul, My Mother and My Brothers for their endless support and continuous encouragement.

List of Contents

Title Page	No.
List of Tables	i
List of Figures	ii
Introduction	1
Review of Literature	
Ceramics	3
Leucite-reinforced glass ceramics:	4
Lithium disilicate:	5
Ultra Translucent Zirconia:	6
Dental plaque	8
Professional dental hygiene measures:	10
Ultrasonic scaling:	11
Air polishing:	12
Surface roughness:	14
Features of oral Biofilm formation on ceramics:	16
Surface roughness measurement:	17
Effect of professional dental hygiene measures on surface roughnes	s: 19
Statement of Problem	27
Aim of the Study	28
Materials and Methods	29
Materials:	29
Leucite reinforced glass ceramic:	29
Lithium disilicate ceramics:	30
Ultra translucent zirconia:	32
Methodology:	34
Samples grouping:	34
Construction of ceramic sections:	35
Mounting of ceramic discs on acrylic blocks:	48

Professional oral hygiene measures:	52
Surface roughness measurement after professional dental hygiene	
measures:	60
Results	61
Descriptive statistics:	61
Effect of different variables and their interaction:	63
Effect of professional hygiene measures regardeless of material and	
time intervals:	64
Effect of ceramic material and maintenance time:	65
Effect of ceramic material within each maintenance time:	65
Effect of maintenance time within each ceramic material:	65
Discussion	68
Summary	76
Conclusion	78
Clinical Significance	79
References	80
Arabic Summary	—

List of Tables

Table No.	Title Page N	0.		
Table (1):	The materials used in the study	29		
Table (2):	Chemical composition of Empress CAD block in in % by weight.	30		
Table (3):	Physical properties of Empress CAD block	30		
Table (4):	Chemical Composition of IPS e.max CAD block in % by weight (wt. %)			
Table (5):	Physical properties of IPS e.max CAD block.	32		
Table (6):	Chemical Composition of Bruxzir anterior in % by weight.	33		
Table (7):	Physical properties of Bruxzir Anterior	33		
Table (8):	Factorial design of tested samples	34		
Table (9):	Mean ± standard deviation (SD) of surface roughness (Ra) for different ceramic materials, professional hygiene measures and maintenance.	62		
Table (10):	Effect of different variables and their interactions on Surface roughness (Ra)			
Table (11):	Mean ± standard deviation (SD) of surface roughness (Ra) for different professional hygiene measures.	64		
Table (12):	Mean ± standard deviation (SD) of surface roughness (Ra) for different ceramic materials and maintenance times			

List of Figures

Fig. No.	Title Page N	0.
Figure (1):	Empress CAD Block.	29
Figure (2):	IPS e.max CAD block	
Figure (3):	Bruxzir anterior	
Figure (4):	Diagrammatic representation for samples grouping	
Figure (5):	Virtual cylinder designing.	
Figure (6):	5 axis milling machine VHF S1*	
Figure (7):	A five axis dental milling machine DWX-51D	
Figure (8):	Low speed precision diamond saw	
Figure (9):	Empress CAD cylinder.	
Figure (10):	Cutting the samples using diamond saw	
Figure (11):	e.max CAD cylinder.	
Figure (12):	Cutting the samples using diamond saw	
Figure (13):	Bruxzir Anterior cylinder	41
Figure (14):	Cutting the samples using diamond saw	41
Figure (15):	Checking the thickness of the sample (IPS empress disc) using Digital caliper.	
Figure (16):	Checking the thickness of the sample (IPS e.max disc) using Digital caliper.	42
Figure (17):	Checking the thickness of the sample (Bruxzir Anterior disc) using Digital caliper	
Figure (18):	Crystallization cycle of e.max in programat p 310	
Figure (19):	Diamond polishing system.	
Figure (20):	IPS e.max CAD crystal/glaze	45
Figure (21):	Glaze material for zirconia	46
Figure (22):	Glazing cycle for Bruxzir anterior.	46
Figure (23):	Glazing cycle of empress CAD in programat p 310	47
Figure (24):	Acrylic resin poured and left to set*	48
Figure (25):	Cementing of ceramic discs on acrylic block	49
Figure (26):	Profilometer	50
Figure (27):	Position cursor of stylus at zero position	51
Figure (28):	Recording pin stylus reading surface roughness	51

Figure (29):	Side view of pin stylus measuring surface	
	roughness	52
Figure (30):	Measuring surface roughness using Profilometer	52
Figure (31):	Diagrammatic representation of the scaling	
	apparatus	53
Figure (32):	Stainless steel ultrasonic tip	54
Figure (33):	Air polishing device with prophy powder.	54
Figure (34):	Top view of the scaling apparatus.	55
Figure (35):	Close up top view of the scaling apparatus	56
Figure (36):	Frontal view of the apparatus with the stainless	
	steel tip in direct contact with the ceramic sample	56
Figure (37):	Working distance of 10 mm for air polishing	57
Figure (38):	Angulation of 60°	58
Figure (39):	Working pressure of 4 bar for air polishing	58
Figure (40):	Side view of the air polishing device	59
Figure (41):	Top view of air polishing device.	59
Figure (42):	Bar chart showing average Surface roughness (Ra)	
	for different professional hygiene measures	64
Figure (43):	Bar chart showing average Surface roughness (Ra)	
	for different ceramic materials within each	
	maintenance time.	66
Figure (44):	Bar chart showing average Surface roughness (Ra)	
	for different maintenance times within each ceramic	
	material	67

Introduction

In recent years, the patients demand for more esthetic restorations that mimicked natural tooth color has led to the increased use of ceramic materials.^[1] Dental ceramics are the restorative material of choice for indirect restorations, mainly due to their biocompatibility, low thermal conductivity, color stability and esthetics.^[2] Dental ceramics are used in restorative dentistry because of their success rate as well as diverse range of chemical and structural compositions, resulting from recent improvements in biomaterial technology.^[3] Many attempts by manufacturers try to produce highly esthetic all-ceramic materials with acceptable mechanical and physical properties.^[4]

Prosthetic dentistry is witnessing a trend toward monolithic ceramic restorations. Monolithic ceramic structure is formed into its shape with the same starting material without adding any other product. These structures must meet the biomechanical requirements and implement durability comparable to metal ceramic restorations, ^[5]while providing superior esthetics. ^[6]

Nowadays, glass-ceramics are broadly used in prosthetic dentistry due to Their adequate mechanical properties and their excellent esthetics.^[7] The most popular are the leucite- and the lithium disilicate-reinforced ones. Also these last years witnessed the development of esthetic monolithic zirconia restorations. ^{[8][9]} Ultra-translucent zirconia(UTZ) has excellent optical features compared to traditional zirconia and translucent ones.

Tintroduction

Plaque control is essential for the prevention of inflammatory periodontal disease. A smooth surface is preferred for optimal biocompatibility of restorative material because rough surfaces encourage plaque retention and cause surrounding soft tissue irritation. Professional dental hygiene measures involve the plaque, calculus and endotoxin removal from teeth or exposed root surfaces.^[10] This can be carried out with manual or mechanical instruments.^[11] Ultrasonic scaling has become the most commonly used method among dental practitioners as they are more efficient and are easier to use than conventional handheld instruments. ^[12] Air polishing system is used for removing extrinsic stains and bacterial deposits from teeth or restorative material surfaces.^[13]

Unfortunately these procedures may affect the integrity of the prosthesis; as they may compromise the marginal seal of the prosthetic structure and can damage the surface and surface texture of the structures. ^[14] The effect of these instruments on metals ceramics, titanium and amalgam has been investigated and documented. ^[15] However, with the increased use of lithium disilicate, leucite reinforced glass ceramics and ultra-translucent zirconia more information on how these structures react to professional dental hygiene measures is still needed.

Review of Literature

Ceramics

Dental ceramics is one of the fastest developing areas of dental material research and development. During the past two decades numerous types of ceramics have been developed with the introduction of various processing methods to accommodate the broad range of applications and requirements in the oral cavity. Ceramics are the material of choice for patients with high esthetic demands due to their superior physical, optical properties and their ability to match natural dentition also they are biocompatible, have high compressive resistance and their thermal expansion is similar to that of tooth structure. These materials are used to form inlays, onlays, veneers, crowns and more complex fixed partial dentures (FPD's).

Fabricating all-ceramic restorations with minimal or no application of a secondary phase while maintaining esthetics has been a sought-after goal of the dental profession. The objective has been development of a monolithic material with optical properties similar to the natural tooth without the need for esthetic layering of porcelain. ^[16] The esthetics of monolithic crowns can be individualized by using staining techniques.

By offering monolithic prostheses, clinicians are able to overcome one of the major problems associated to multilayered restorations, which is the fracture of the low-strength veneering layer, usually made of a feldspathic dental ceramic. All-ceramic systems are classified into three major categories based upon their major composition, which are feldspathic and glass-ceramic, alumina-based, and zirconia-based system.