The Role of Bcl-2 in Pediatric Functional Bowel Obstruction Cases with Ganglionated Specimens

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Pathology

Bγ **Lobna Abd El Fattah Mohamed Hasan Attia** *M.B.B.Ch*, *M.SC*

Under Supervision of

Prof. Nedal Ahmed Hegazy

Professor of Pathology Faculty of Medicine-Ain Shams University

Prof. Faten Abd El Aziz Ghazal

Professor and Head of Pathology Department Faculty of Medicine-Ain Shams University

Prof. Ahmed Mohy El Din Zaki

Professor of Pathology Faculty of Medicine-Ain Shams University

Asst. Prof. Sarah Adel Hakim

Assistant Professor of Pathology Faculty of Medicine-Ain Shams University

Asst. Prof. Ahmed Bassiouny Arafa

Assistant Professor of Pediatric Surgery Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, Thanks are all to AllAH, by the grace of whom, this work was possible.

I am greatly indebted to all my supervisors for their great effort, advice and support throughout the preparation of this work.

I would like to express my unlimited gratitude and appreciation to my **Prof. Dr. Medal Ahmed Hegazy,** Professor of Pathology, Faculty of Medicine, Ain Shams University, for her valuable comments, continuous guidance and tremendous effort during this work.

My deep appreciation and thanks to **Prof. Dr. Faten**Abd El Aziz Ghazal, Professor of Pathology, Faculty of Medicine, Ain Shams University, for her valuable advice, encouragement and support throughout this work.

My greatest thanks and gratitude to **Prof. Dr. Ahmed**Mohy El Din Zaki, Professor of Pathology, Faculty of Medicine,
Ain Shams University, for his supervision, great care and helpful
ideas during this work.

I am profoundly grateful to Ass. Prof. Dr. Sarah Adel Wakim, Assistant Professor of Pathology, Faculty of Medicine, Ain Shams University, for her faithful guidance and meticulous revision.

My warmest thanks are expressed to Ass. Prof. Dr. Ahmed Bassiouny Arafa, Assistant Professor of Pediatric Surgery, Faculty of Medicine, Ain Shams University, for his help, and valuable comments.

Finally, I am truly grateful to my family and colleagues who helped and supported me to complete this work.

Lobna Abd El Fattah Mohamed Hasan Attia

List of Contents

Title Pa	ge No.
List of Tables	5
List of Figures	7
List of Abbreviations	12
Introduction	1
Aim of the Work	3
Review of Literature	
Anatomy and Histology of the Colon	4
Hirschsprung's Disease and Hirschsprung Related Disorders	
Histopathological Diagnosis	
Molecular Aspects	
Bcl-2 (B-cell lymphoma/leukemia-2) gene	
Material and Methods	66
Results	73
Illustrative Cases	94
Discussion	113
Summary	128
Conclusion	132
Recommendations	133
References	135
Arabic Summary	

List of Tables

Table No.	Title Pag	ge No.
Table (1): Table (2):	Classification of Neuromuscular Disorders The Bcl-2 family proteins	
Table (3):	Stages of nervous system development wir	th
	corresponding age of mice, along with the	eir
	key features and correlation with ke	•
	changes in expression levels of pro-surviv	
7 11 (4)	BCL-2 family members	
Table (4):	Demographic data	
Table (5):	Provisional clinical diagnosis	
Table (6):	Type of specimen	
Table (7):	Clinical data	
Table (8):	Surgical procedures	
Table (9): Table (10):	Ganglion cell number Immature ganglion cells by H&E	
Table (10):	Type of ganglia	
Table (11):	Nerve bundle hypertrophy	
Table (12):	Inflammation	
Table (14):	Final diagnosis of IND	
Table (15):	Bcl-2 status	
Table (16):	Relation between Bcl-2 status ar	
14610 (10)	demographic data	
Table (17):	Relation between Bcl-2 status and Type	
, ,	specimen	
Table (18):	Relation between Bcl-2 status ar	nd
	Ganglion cell number	82
Table (19):	Relation between Bcl-2 status ar	nd
	immature ganglion cells by H&E	83
Table (20):	Relation between Bcl2 status and Ner	ve
	bundle hypertrophy	
Table (21):	Relation between Bcl2 status and fin	al
	diagnosis of IND	
Table (22):	Relation between Bcl2 status and diagnos	
	of IND, Post HD cases	86

List of Tables (Cont...)

Table No.	Title P	age 1	V o.
Table (23):	Relation between IND and	age,	
	inflammation		88
Table (24):	Relation between ganglion cell number	and	
	sex		89
Table (25):	Relation between Ganglion cell nur and Provisional diagnosis		90
Table (26):	Relation between ganglion cell number immature ganglion cells by H&E		91
Table (27):	Relation between ganglion cell number Nerve bundle hypertrophy		92
Table (28):	Relation between immature ganglion and age, type of specimen and nerve bu		
	hypertrophy	•••••	93

List of Figures

Fig. No.	Title	Page No.
Figure (1):	General organisation of the colonic	wall 7
Figure (2):	Low power haematoxylin and	
_	(H&E) view of colonic wall	7
Figure (3):	Colonic crypts with numerous	goblet
_	cells and columnar absorptive ce	lls on
	the surface	9
Figure (4):	Normal ganglion cells	11
Figure (5):	Myenteric plexus (Auerbach's plexu	s)12
Figure (6):	Gross specimen of Hirschsprung dis	sease15
Figure (7):	Markedly reduced numbers of gar	
	cells in the myenteric p	lexus,
	representing hypoganglionosis	21
Figure (8):	Giant ganglia in the submucosa	26
Figure (9):	Normal ganglion cells Imm	
	ganglion cells	33
Figure (10):	Diagnostic approach to a suction m	
	biopsy for the workup of Hirschs	
	disease and related disorders	
Figure (11):	Schematic representation of apo	_
	pathway	
Figure (12):	Role of Bcl-2 family of protein	
	development	
Figure (13):	Specimen from distended segme	
	HSD newborn patient showing	
	immunoreactivity in small ganglion	
T) (1.4)	in the submucosal plexus	
Figure (14):	Bcl-2 status	
Figure (15):	Relation between Bcl-2 status	
E' (10)	ganglion cell number	
Figure (16):	Relation between Bcl2 status and	
	diagnosis of IND	85

Fig. No.	Title	Page	No.
Figure (17):	Relation between Bcl2 and diagno IND, Post HD cases		87
Figure (18):	Relation between Ganglion cell nu and Nerve bundle hypertrophy	ımber	92
Figure (19):	Intestinal Neuronal Dysplasia showing giant ganglia and hypertro	phied	0.4
Figure (20):	nerve bundles (H&E X200)	cells (H&E	94
Figure (21):	High magnification for the giant ga with numerous ganglion cells (nglia	
Figure (22):	Mature ganglion cells show negative weak staining for Bcl-2 while imm ganglion cells show strong positivity case of IND, score 3+ (IHC, DABX20)	ature y in a	95
Figure (23):	Higher magnification showing mature ganglion cells are negative Bcl-2 in contrast to the positive immature ganglion cells	that re for ty of (IHC,	
Figure (24):	DABX400) Ectopic ganglion cells in the la propria showing positive staining fo 2 (IHC, DABX100)	ımina r Bcl-	96
Figure (25):	Strong positivity for Bcl-2 in >6 gar cells in the submucosal nerve pl	nglion lexus,	
Figure (26):	Score 3+ (IHC, DABX400)Submucosal nerve plexus sho strongly positive ganglion cells for increase 2+ (IHC, DABX400).	owing Bcl-2,	97
	score 3+ (IHC, DABX400)		97

Fig. No.	Title	Page	No.
Figure (27):	Mononuclear inflammatory infiltrate with lymphoid formation in a case of In Neuronal Dysplasia (H&EX200).	follicle itestinal	98
Figure (28):	High power view showing neutro well as mononuclear inflammato infiltrating the nerve (H&EX400).	phils as ory cells bundles	
Figure (29):	A case of hypoganglionosis s markedly reduced number of g cells with degenerated ones (H&F	showing ganglion	
Figure (30):	Higher magnification shypoganglionosis with im	showing nmature	
Figure (31):	ganglion cells (H&E X400) Two ganglion cells showing staining for Bcl-2, score1+	weak (IHC,	
Figure (32):	DABX400)	se with showing 0 (IHC,	
Figure (33):	Negative Bcl-2 staining in gangli-Score 0 (IHC, DABX400).	on cells,	
Figure (34):	A case of Post Hirschsprung's showing adequate number of g cells (H&E X200)	Disease ganglion	
Figure (35):	A higher magnification showing than two mature ganglion cel	g more ls with	101
Figure (36):	hypertrophied myenteric nerve (H&E X400)	plexus	102
	(H&Ex200)		102

Fig. No.	Title	Page No.
Figure (37):	A case of Post Hirschsprung's Di with adequate number of ganglion showing weakly positive Bcl-2 sta- score 1+ (IHC, DABX200)	cells ining, 103
Figure (38):	High power view showing positivity Bcl-2 in one ganglion cell among specific faint staining of the others, 1+ (IHC, DABX400)	g non score
Figure (39):	A case of Post Hirschsprung's Dishowing weak positivity in one gar cell, score 1+ (IHC, DABX400)	isease nglion
Figure (40):	A case of clinically query Hirschspr Disease showing adequate numb ganglion cells and hypertrophied bundles (H&E X400)	rung's er of nerve
Figure (41):	Moderate Bcl-2 positive staining of	of ~ 5
Figure (42):	ganglion cells, score 2+ (IHC, DABX Bcl-2 strong positivity in the myer ganglion cells in an adeque ganglionic specimen, score 3+ DABx200)	nteric ıately (IHC,
Figure (43):	Higher magnification showing s Bcl-2 positivity of >6 ganglion Score 3+ (IHC, DABX 400)	strong cells,
Figure (44):	Submucosal ganglion cells sho positive staining for Bcl-2 in a ca clinically query Hirschsprung's Di	owing ase of isease
Figure (45):	with adequately ganglionic spec score 2+ (IHC, DABX400)	uding high and

Fig. No.	Title	Page	No.
Figure (46):	showing immature ganglion cells dark nuclei and inconspicuous nu	with icleoli	
Figure (47):	(H&E X400)	ature r Bcl-	
Figure (48):	Higher magnification showing mod Bcl-2 positivity in ~ 5 ganglion	lerate cells,	
Figure (49):	Score 2+ (IHC, DABX400) Moderate staining for Bcl-2 in immature ganglion cells with neg staining of mature ganglion cells, 2+ (IHC, DABX400)	the gative score	
Figure (50):	High power view of myenteric plexus showing Bcl-2 negativit mature ganglion cells while immature ones are positively st	nerve y in the	100
Figure (51):	(IHC, DABX400) Bcl-2 strong positivity in the mye ganglion cells, score 3+ (IHC, DABx	nteric	
Figure (52):	Higher magnification showing strong positivity in >6 ganglion score 3+ (IHC, DABx200)	Bcl-2 cells,	
Figure (53):	High power view showing strong postaining of the immature ganglion with Bcl-2, score 3+ (IHC, DABx400	sitive cells	
Figure (54):	Mantle zone of lymphoid fo positively stained with Bcl-2 whil germinal centers are negatively sta	llicles e the	
Figure (55):	used as a control (IHC, DABX100) Normal colonic mucosa positively st for Bcl-2, used as a control DABX200)	ained (IHC,	

List of Abbreviations

Abb.	Full term
\overline{AChE}	Acetylcholinestrease
	Allied Disorders of Hirschsprung's Disease
	Bcl-2-associated death protein
	Bcl-2 homologous antagonist killer
	Bcl-2-associated X protein
	B-cell lymphoma/leukemia-2
	B-cell lymphoma-extra large
	Bcl-2 homology
	BH3-interacting domain death agonist
	BCL2 Interacting Killer
	Bcl-2–interacting mediator of cell death
	Bcl2 Modifying Factor
	Bone morphogenetic proteins
	Bone morphogenetic protein receptor IA
Caspases	Cysteine-aspartic proteases
<i>CD</i>	Cluster of Differentiation
	Coxsackie and adenovirus receptor-like membrane
	protein
<i>CMV</i>	Cytomegalovirus
CNS	Central nervous system
<i>CR</i>	Cal retinin
<i>DAB</i>	Diamin obenzi dine
<i>DNA</i>	Deoxyribonucleic acid
EDNRB	$Endothelin\ Receptor\ Type\ B$
<i>ENS</i>	Enteric nervous system
<i>ER</i>	Endoplasmic reticulum
<i>GC</i>	Ganglion cell
GDNF	Glial cell-derived neurotrophic factor
<i>GIT</i>	Gastrointestinal tract
<i>H&E</i>	Haematoxylin and Eosin
	Heart and Neural Crest Derivatives Expressed 2
HD	Hirschsprung's disease
<i>HG</i>	Hypoganglionosis

List of Abbreviations (Cont...)

Abb.	Full term
HRK	Harakiri BCL2 Interacting Protein
<i>IND</i>	Intestinal Neuronal Dysplasia
<i>Kg</i>	Kilogram
<i>LP</i>	Lamina propria
<i>MAP</i>	Microtubule associated protein
Mash1	Mammalian achaete-scute homolog 1
<i>MBR</i>	Membrane-bound region
<i>Mcl-1</i>	Myeloid cell leukemia 1
<i>MOMP</i>	Mitochondrial outer membrane permeabilization
	Nicotinamide adenine dinucleotide phosphate
	diaphorase
<i>NCAM</i>	Neural cell adhesion molecule
$Neu\ N$	Neuronal nuclear protein
<i>NID</i>	Neuronal Intestinal Dysplasia
NOCD	Naturally occurring neuronal cell death
<i>NOM</i>	Nuclear outer membrane
<i>NSE</i>	Neuron-specific enolase
<i>PBS</i>	Phosphate buffer solution
PGP9.5	Protein gene product 9.5
<i>PHOX2B</i>	Paired-like homeobox 2b
<i>PIPO</i>	Paediatric intestinal pseudo-obstruction
<i>PNS</i>	Peripheral nervous system
<i>PTEN</i>	Phosphatase and tensin homolog
<i>PUMA</i>	p53 upregulated modulator of apoptosis
$RET \dots RET$	Rearranged during transfection
<i>Sox</i>	Sry-related HMG box
<i>SPRY2</i>	Sprouty homolog 2
<i>TAU</i>	Tubulin associated unit
<i>tBid</i>	Truncated Bid
<i>VIP</i>	Vasoactive intestinal polypeptide

Introduction

Pediatric motility disorders constitute a complex array of clinicopathologic disturbances (*Feichter et al., 2010*).

Intestinal pseudo-obstruction is a disorder characterised by the inability of the gastrointestinal tract to propel its contents mimicking mechanical obstruction, in the absence of any lesion occluding the gut (*Thapar et al., 2018*). It may affect various components of the bowel neuromuscular apparatus (*Jain, 2015*). It is a rare disease with scant epidemiological data (*Thapar et al., 2018*).

Congenital intestinal neuronal abnormalities have been classified as aganglionosis (Hirschsprung's disease), hyperganglionosis, hypoganglionosis, ganglion cell immaturity, combined forms and certain unclassifiable forms (*Henna et al.*, 2011).

Of all the variations of the enteric nervous system, hyperganglionosis is the most discussed and open to controversy largely because of its association with the diagnosis of intestinal neuronal dysplasia (IND type B) (*Torre et al.*, 2002).

IND-B can be regarded as a phenotype of relative enteric neural immaturity that may only be recognized with confidence after age of one year and often disappears spontaneously by age of 4 years (*Kapur and Reyes-Mugica*, 2019). It is rarely

reported in adult patients (*Masuda et al.*, 2017). It is characterized by hyperplasia of the myenteric nerves accompanied by giant ganglia (*Goldblum*, 2018).

IND remains surrounded by controversies related to its definition, etiopathogenesis, diagnostic criteria and therapeutic possibilities (*Lourencao et al.*, 2016).

Immature ganglion cell is known for its relationship with intestinal motility and its impact on postoperative functional outcomes of Hirschsprung's disease (*Yang et al.*, 2013).

The recognition of immature ganglion cells is not always easy. They have a smaller, darker nucleus without a recognizable nucleolus. Special staining methods may be necessary to clarify the ganglion cell morphology and identify immature cells (*Moore*, 2017).

The BCL-2 gene, an acronym for B-cell lymphoma/leukemia-2 gene, was first identified in B-cell follicular lymphomas (*Tsujimoto et al.*, 1985). Bcl-2, acts as an important regulator of cell death (*Ujval and Prehn*, 2014).

It can also provide a much more efficacious way in finding the dysplastic (immature) ganglion cells since previous studies showed that it was specifically expressed in them with a positive immunoreactivity in the degenerative and immature ganglion cells but not the mature ganglion cells (*Wang et al.*, 2016).